已知函數(shù)y=f(x)是偶函數(shù),對(duì)于x∈R都有f(x+6)=f(x)+f(3)成立.當(dāng)x1、x2∈[0,3],且x1≠x2時(shí),都有>0,給出下列命題:
①f(3)=0;
②直線x=-6是函數(shù)y=f(x)的圖象的一條對(duì)稱軸;
③函數(shù)y=f(x)在[-9,-6]上為單調(diào)增函數(shù);
④函數(shù)y=f(x)在[-9,9]上有4個(gè)零點(diǎn).
其中正確的命題是________.(填序號(hào))
①②④
【解析】令x=-3,得f(-3)=0,由y=f(x)是偶函數(shù),所以f(3)=f(-3)=0,①正確;因?yàn)?/span>f(x+6)=f(x),所以y=f(x)是周期為6的函數(shù),而偶函數(shù)圖象關(guān)于y軸對(duì)稱,所以直線x=-6是函數(shù)y=f(x)的圖象的一條對(duì)稱軸,②正確;由題意知,y=f(x)在[0,3]上為單調(diào)增函數(shù),所以在[-3,0]上為單調(diào)減函數(shù),故y=f(x)在[-9,-6]上為單調(diào)減函數(shù),③錯(cuò)誤;由f(3)=f(-3)=0,知f(-9)=f(9)=0,所以函數(shù)y=f(x)在[-9,9]上有個(gè)零點(diǎn),④正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第4課時(shí)練習(xí)卷(解析版) 題型:填空題
設(shè)函數(shù)f(x)是奇函數(shù)且周期為3,若f(1)=-1,則f(2015)=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第1課時(shí)練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=則滿足不等式f(f(x))>1的x的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第14課時(shí)練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=若關(guān)于x的方程f(x)=kx(k>0)有且僅有四個(gè)根,其最大根為t,則函數(shù)g(t)=t2-6t+7的值域?yàn)?/span>________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第14課時(shí)練習(xí)卷(解析版) 題型:解答題
設(shè)函數(shù)f(x)=其中b>0,c∈R.當(dāng)且僅當(dāng)x=-2時(shí),函數(shù)f(x)取得最小值-2.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若方程f(x)=x+a(a∈R)至少有兩個(gè)不相同的實(shí)數(shù)根,求a取值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第13課時(shí)練習(xí)卷(解析版) 題型:解答題
提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度v(km/h)是車流密度x(輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/km時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/km時(shí),車流速度為60km/h,研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x·v(x)可以達(dá)到最大,并求出其最大值.(精確到1輛/小時(shí))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第13課時(shí)練習(xí)卷(解析版) 題型:解答題
某單位決定對(duì)本單位職工實(shí)行年醫(yī)療費(fèi)用報(bào)銷制度,擬制定年醫(yī)療總費(fèi)用在2萬元至10萬元(包括2萬元和10萬元)的報(bào)銷方案,該方案要求同時(shí)具備下列三個(gè)條件:①報(bào)銷的醫(yī)療費(fèi)用y(萬元)隨醫(yī)療總費(fèi)用x(萬元)增加而增加;②報(bào)銷的醫(yī)療費(fèi)用不得低于醫(yī)療總費(fèi)用的50%;③報(bào)銷的醫(yī)療費(fèi)用不得超過8萬元.
(1)請(qǐng)你分析該單位能否采用函數(shù)模型y=0.05(x2+4x+8)作為報(bào)銷方案;
(2)若該單位決定采用函數(shù)模型y=x-2lnx+a(a為常數(shù))作為報(bào)銷方案,請(qǐng)你確定整數(shù)a的值.(參考數(shù)據(jù):ln2≈0.69,ln10≈2.3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第12課時(shí)練習(xí)卷(解析版) 題型:解答題
設(shè)函數(shù)f(x)=x2-(a-2)x-alnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)有兩個(gè)零點(diǎn),求滿足條件的最小正整數(shù)a的值;
(3)若方程f(x)=c有兩個(gè)不相等的實(shí)數(shù)根x1、x2,求證:f′>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第10課時(shí)練習(xí)卷(解析版) 題型:填空題
函數(shù)f(x)=(x-1)sinπx-1(-1<x<3)的所有零點(diǎn)之和為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com