【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(其中為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,并取相同的單位長(zhǎng)度,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)過點(diǎn)作直線的垂線交曲線于兩點(diǎn),求.
【答案】(1),; (2)16.
【解析】
(1)對(duì)直線的參數(shù)方程消參得,利用即可將化為,問題得解。
(2)利用已知即可求得過點(diǎn)的直線的參數(shù)方程為:,聯(lián)立直線參數(shù)方程與曲線的普通方程可得:,結(jié)合韋達(dá)定理及直線參數(shù)方程中參數(shù)的幾何意義即可得解。
(1)直線的參數(shù)方程為(其中為參數(shù))
消去可得:,
由得,得.
(2)過點(diǎn)與直線垂直的直線的參數(shù)方程為:(t為參數(shù)),代入可得,
設(shè)M,N對(duì)應(yīng)的參數(shù)為,,則,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式的解集為空集,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:與直線相交于,兩點(diǎn),為拋物線的焦點(diǎn),若,則的中點(diǎn)的橫坐標(biāo)為( )
A. B. 3C. 5D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】鯉魚是中國(guó)五千年文化傳承的載體之一,它既是拼搏進(jìn)取、敢于突破自我、敢于冒險(xiǎn)奮進(jìn)精神的載體,又是富裕、吉慶、幸運(yùn)的美好象征.某水產(chǎn)養(yǎng)殖研究所為發(fā)揚(yáng)傳統(tǒng)文化,準(zhǔn)備進(jìn)行“中國(guó)紅鯉”和“中華彩鯉”雜交育種實(shí)驗(yàn).研究所對(duì)200尾中國(guó)紅鯉和160尾中華彩鯉幼苗進(jìn)行2個(gè)月培育后,將根據(jù)體長(zhǎng)分別選擇生長(zhǎng)快的10尾中國(guó)紅鯉和8尾中華彩鯉作為種魚進(jìn)一步培育.為了解培育2個(gè)月后全體幼魚的體長(zhǎng)情況,按照品種進(jìn)行分層抽樣,其中共抽取40尾中國(guó)紅鯉的體長(zhǎng)數(shù)據(jù)(單位:)如下:
5 | 6 | 7 | 7.5 | 8 | 8.4 | 4 | 3.5 | 4.5 | 4.3 |
5 | 4 | 3 | 2.5 | 4 | 1.6 | 6 | 6.5 | 5.5 | 5.7 |
3.1 | 5.2 | 4.4 | 5 | 6.4 | 3.5 | 7 | 4 | 3 | 3.4 |
6.9 | 4.8 | 5.6 | 5 | 5.6 | 6.5 | 3 | 6 | 7 | 6.6 |
(1)根據(jù)以上樣本數(shù)據(jù)推斷,若某尾中國(guó)紅鯉的體長(zhǎng)為,它能否被選為種魚?說明理由;
(2)通過計(jì)算得到中國(guó)紅鯉樣本數(shù)據(jù)平均值為,中華彩鯉樣本數(shù)據(jù)平均值為,求所有樣本數(shù)據(jù)的平均值;
(3)如果將8尾中華彩鯉種魚隨機(jī)兩兩組合,求體長(zhǎng)最長(zhǎng)的2尾組合到一起的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系,直線過點(diǎn),且傾斜角為,以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求直線的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與圓交于、兩點(diǎn),若,求直線的傾斜角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線與拋物線交于,兩點(diǎn),且.
(1)求的方程;
(2)試問:在軸的正半軸上是否存在一點(diǎn),使得的外心在上?若存在,求的坐標(biāo);若不存在,請(qǐng)說明理由..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹腻涹w,下底面寬3丈,長(zhǎng)4丈,上棱長(zhǎng)2丈,高2丈,問:它的體積是多少?”(已知1丈為10尺)該鍥體的三視圖如圖所示,則該鍥體的體積為( )
A. 12000立方尺B. 11000立方尺
C. 10000立方尺D. 9000立方尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)到其準(zhǔn)線的距離為.
(1)求拋物線的方程;
(2)設(shè)直線與拋物線相交于兩點(diǎn),問拋物線上是否存在點(diǎn),使得是正三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓柱,底面半徑為1,高為2,是圓柱的一個(gè)軸截面,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿著圓柱的側(cè)面到達(dá)點(diǎn),其路徑最短時(shí)在側(cè)面留下的曲線記為:將軸截面繞著軸,逆時(shí)針旋轉(zhuǎn) 角到位置,邊與曲線相交于點(diǎn).
(1)當(dāng)時(shí),求證:直線平面;
(2)當(dāng)時(shí),求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com