【題目】如圖,圓柱的軸截面是邊長(zhǎng)為2的正方形,點(diǎn)P是圓弧上的一動(dòng)點(diǎn)(不與重合),點(diǎn)Q是圓弧的中點(diǎn),且點(diǎn)在平面的兩側(cè).

1)證明:平面平面;

2)設(shè)點(diǎn)P在平面上的射影為點(diǎn)O,點(diǎn)分別是的重心,當(dāng)三棱錐體積最大時(shí),回答下列問(wèn)題.

i)證明:平面

ii)求三棱錐的體積.

【答案】1)證明見(jiàn)解析(2)(i)證明見(jiàn)解析(ii

【解析】

1)由,可得平面,即可證明;

2)(i)連接并延長(zhǎng)交于點(diǎn)M,連接并延長(zhǎng)交于點(diǎn)N,連接,利用平行線分線段成比例可得,即可得得證;

ii)根據(jù)即可求解.

1)證明:因?yàn)?/span>是軸截面,

所以平面,所以,

又點(diǎn)P是圓弧上的一動(dòng)點(diǎn)(不與重合),且為直徑,

所以,

平面,平面,

所以平面,平面,

故平面平面.

2)當(dāng)三棱錐體積最大時(shí),點(diǎn)P為圓弧的中點(diǎn).所以點(diǎn)O為圓弧的中點(diǎn),

所以四邊形為正方形,且平面.

i)證明:連接并延長(zhǎng)交于點(diǎn)M,連接并延長(zhǎng)交于點(diǎn)N,連接,

,

因?yàn)?/span>分別為三角形的重心,所以,

所以

所以,

平面平面,

所以平面.

ii)因?yàn)?/span>平面

所以,

,

所以平面

因?yàn)?/span>,

所以平面,即平面,即是三棱錐的高.

,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已雙曲線的一條漸近線與橢圓C)在第一象限的交點(diǎn)為P,為橢圓C的左、右焦點(diǎn),若,則橢圓C的離心率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x),若存在x,使得f(x)<2,則實(shí)數(shù)a的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),隨著網(wǎng)絡(luò)的普及和智能手機(jī)的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門(mén).某大學(xué)為了調(diào)查在校大學(xué)生使用的主要用途,隨機(jī)抽取了名大學(xué)生進(jìn)行調(diào)查,各主要用途與對(duì)應(yīng)人數(shù)的結(jié)果統(tǒng)計(jì)如圖所示,現(xiàn)有如下說(shuō)法:

①可以估計(jì)使用主要聽(tīng)音樂(lè)的大學(xué)生人數(shù)多于主要看社區(qū)、新聞、資訊的大學(xué)生人數(shù);

②可以估計(jì)不足的大學(xué)生使用主要玩游戲;

③可以估計(jì)使用主要找人聊天的大學(xué)生超過(guò)總數(shù)的.

其中正確的個(gè)數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由我國(guó)引領(lǐng)的5G時(shí)代已經(jīng)到來(lái),5G的發(fā)展將直接帶動(dòng)包括運(yùn)營(yíng)、制造、服務(wù)在內(nèi)的通信行業(yè)整體的快速發(fā)展,進(jìn)而對(duì)增長(zhǎng)產(chǎn)生直接貢獻(xiàn),并通過(guò)產(chǎn)業(yè)間的關(guān)聯(lián)效應(yīng)和波及效應(yīng),間接帶動(dòng)國(guó)民經(jīng)濟(jì)各行業(yè)的發(fā)展,創(chuàng)造岀更多的經(jīng)濟(jì)增加值.如圖是某單位結(jié)合近年數(shù)據(jù),對(duì)今后幾年的5G經(jīng)濟(jì)產(chǎn)出所做的預(yù)測(cè).結(jié)合下圖,下列說(shuō)法正確的是(

A.5G的發(fā)展帶動(dòng)今后幾年的總經(jīng)濟(jì)產(chǎn)出逐年增加

B.設(shè)備制造商的經(jīng)濟(jì)產(chǎn)出前期增長(zhǎng)較快,后期放緩

C.設(shè)備制造商在各年的總經(jīng)濟(jì)產(chǎn)出中一直處于領(lǐng)先地位

D.信息服務(wù)商與運(yùn)營(yíng)商的經(jīng)濟(jì)產(chǎn)出的差距有逐步拉大的趨勢(shì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花圃為提高某品種花苗質(zhì)量,開(kāi)展技術(shù)創(chuàng)新活動(dòng),在實(shí)驗(yàn)地分別用甲、乙方法培育該品種花苗.為觀測(cè)其生長(zhǎng)情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各50株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖,記綜合評(píng)分為80分及以上的花苗為優(yōu)質(zhì)花苗.

1)用樣本估計(jì)總體,以頻率作為概率,若在兩塊實(shí)驗(yàn)地隨機(jī)抽取3株花苗,求所抽取的花苗中優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;

2)填寫(xiě)下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).

優(yōu)質(zhì)花苗

非優(yōu)質(zhì)花苗

合計(jì)

甲培育法

20

乙培育法

10

合計(jì)

附:下面的臨界值表僅供參考.

0.050

0.010

0.001

3.841

6.635

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)場(chǎng)為了提高某品種水稻的產(chǎn)量,進(jìn)行良種優(yōu)選,在同一試驗(yàn)田中分兩塊種植了甲乙兩種水稻.為了比較甲乙兩種水稻的產(chǎn)量,現(xiàn)從甲乙兩種水稻中各隨機(jī)選取20株成熟水稻.根據(jù)每株水稻顆粒的重量(單位:克)繪制了如下莖葉圖:

1)根據(jù)莖葉圖判斷哪種水稻的產(chǎn)量更高?并說(shuō)明理由;

2)求40株水稻顆粒重量的中位數(shù),并將重量超過(guò)和不超過(guò)的水稻株數(shù)填入下面的列聯(lián)表:

超過(guò)

不超過(guò)

甲種水稻

乙種水稻

3)根據(jù)(2)中的列聯(lián)表,能否有的把握認(rèn)為兩種水稻的產(chǎn)量有差異?:;

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)由方程到確定,對(duì)于函數(shù)給出下列命題:

①對(duì)任意,都有恒成立:

,使得同時(shí)成立;

③對(duì)于任意恒成立;

④對(duì)任意,

都有恒成立.其中正確的命題共有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市為了了解“微信支付”與“支付寶支付”的情況(“微信支付”與“支付寶支付”統(tǒng)稱(chēng)為“移動(dòng)支付”),對(duì)消費(fèi)者在該超市在20191-6月的支付方式進(jìn)行統(tǒng)計(jì),得到如圖所示的折線圖,則下列判斷正確的是(

①這6個(gè)月中使用“微信支付”的總次數(shù)比使用“支付寶支付”的總次數(shù)多

②這6個(gè)月中使用“微信支付”的消費(fèi)總額比使用“支付寶支付”的消費(fèi)總額大

③這6個(gè)月中4月份平均每天使用“移動(dòng)支付”的次數(shù)最多

2月份平均每天使用“移動(dòng)支付”比5月份平均每天使用“移動(dòng)支付”的次數(shù)多

A.①③B.①②③C.①③④D.①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案