設(shè)正項數(shù)列的前項和為,向量,()滿足.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列的通項公式為(),若,,()成等差數(shù)列,求和的值;
(3).如果等比數(shù)列滿足,公比滿足,且對任意正整數(shù),仍是該數(shù)列中的某一項,求公比的取值范圍.
(1);(2);(3).
解析試題分析:(1)由可以得到,即,利用,可得,即是以1為首項,2為公差的等差數(shù)列,從而求得通項公式;
(2)由是等差數(shù)列可得,即,整理得,根據(jù)m,t是正整數(shù),所以t-1只可能是1,2,4,從而解得;
(3)易知,因為仍是該數(shù)列中的某一項,所以是該數(shù)列中的某一項,又是q的幾次方的形式,所以也是q的幾次方的形式,而,所以,所以只有可能是q,,所以,所以.
(1)∵,∴,∴①
當n=1,有,是正項數(shù)列,∴
當,有②,
①-②,得,,∴,
∴數(shù)列以,公差為2的等差數(shù)列,;
(2)易知,∵是等差數(shù)列,
即,∴,整理得,
∵m,t是正整數(shù),所以t只可能是2,3,5,∴;
易知,∵仍是該數(shù)列中的某一項,記為第t項,∴,即,∵,∴,
,又∵,∴只有t-k=1,即,解得
考點:1、數(shù)列的通項公式;2、數(shù)列綜合.
科目:高中數(shù)學 來源: 題型:解答題
在等差數(shù)列中,,其前項和為,等比數(shù)列 的各項均為正數(shù),,公比為,且,.
(1)求與; (2)設(shè)數(shù)列滿足,求的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知各項均為正數(shù)的數(shù)列的前項和為,且對任意的,都有。
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,且cn=anbn,求數(shù)列的前 項和;
(3)在(2)的條件下,是否存在整數(shù),使得對任意的正整數(shù),都有,若存在,求出的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是一個公差大于0的等差數(shù)列,且滿足.
(1)求數(shù)列的通項公式;
(2)若數(shù)列和數(shù)列滿足等式:(n為正整數(shù))求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(2011•浙江)已知公差不為0的等差數(shù)列{an}的首項a1為a(a∈R)設(shè)數(shù)列的前n項和為Sn,且,,成等比數(shù)列.
(1)求數(shù)列{an}的通項公式及Sn;
(2)記An=+++…+,Bn=++…+,當n≥2時,試比較An與Bn的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(2013·杭州模擬)已知數(shù)列{an}的前n項和Sn=-an-n-1+2(n∈N*),數(shù)列{bn}滿足bn=2nan.
(1)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項公式.
(2)設(shè)數(shù)列的前n項和為Tn,證明:n∈N*且n≥3時,Tn>.
(3)設(shè)數(shù)列{cn}滿足an(cn-3n)=(-1)n-1λn(λ為非零常數(shù),n∈N*),問是否存在整數(shù)λ,使得對任意n∈N*,都有cn+1>cn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)等差數(shù)列{an}的首項a1為a,公差d=2,前n項和為Sn.
(1) 若當n=10時,Sn取到最小值,求的取值范圍;
(2) 證明:n∈N*, Sn,Sn+1,Sn+2不構(gòu)成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知公比不為的等比數(shù)列的首項,前項和為,且成等差數(shù)列.
(1)求等比數(shù)列的通項公式;
(2)對,在與之間插入個數(shù),使這個數(shù)成等差數(shù)列,記插入的這個數(shù)的和為,求數(shù)列的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com