【題目】已知橢圓C: (a>b>0 ) 經(jīng)過點(diǎn) P(1, ),離心率 e=
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè)過點(diǎn)E(0,﹣2 ) 的直線l 與C相交于P,Q兩點(diǎn),求△OPQ 面積的最大值.
【答案】解:(Ⅰ)由點(diǎn) 在橢圓上得, ①
又e= = ②,c2=a2﹣b2③
由①②③得c2=3,a2=4,b2=1,
故橢圓C的標(biāo)準(zhǔn)方程為 .
(Ⅱ)當(dāng)直線l的斜率不存在,不合題意,可設(shè)直線l:y=kx﹣2,P(x1 , y1),Q(x2 , y2),
將y=kx﹣2代入橢圓方程x2+4y2=4,可得(1+4k2)x2﹣16kx+12=0,
由△=162k2﹣48(1+4k2)>0,解得k> 或k<﹣ .
x1+x2= ,x1x2= ,
|PQ|= |x1﹣x2|= =4 ,
又O到直線PQ的距離d= ,
則S△OPQ= d|PQ|=4 ,
設(shè)t= ,(t>0),則4k2=3+t2 ,
即有S△OPQ= =
由t+ ≥2 =4,
當(dāng)且僅當(dāng)t=2,即k=± 時(shí)等號(hào)成立,足判別式大于0.
則S△OPQ≤1.
故△OPQ 面積的最大值為1
【解析】(Ⅰ)運(yùn)用橢圓的離心率公式和點(diǎn)滿足橢圓方程,以及a,b,c的關(guān)系,解方程可得a,b,進(jìn)而得到橢圓方程;(Ⅱ)當(dāng)直線l的斜率不存在,不合題意,可設(shè)直線l:y=kx﹣2,P(x1 , y1),Q(x2 , y2),聯(lián)立橢圓方程,消去y,得到x的方程,運(yùn)用判別式大于0和韋達(dá)定理,以及弦長(zhǎng)公式,點(diǎn)到直線的距離公式,由三角形的面積公式,運(yùn)用換元法和基本不等式即可得到所求最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足a1= ,an+1﹣an+anan+1=0(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:a1+a1a2+a1a2a3+…+a1a2…an<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點(diǎn)A(1,1)和B(4,﹣2),且圓心C在直線l:x+y+1=0上.
(Ⅰ)求圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)M,N為圓C上兩點(diǎn),且M,N關(guān)于直線l對(duì)稱,若以MN為直徑的圓經(jīng)過原點(diǎn)O,求直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù)(其中a是實(shí)數(shù)).
(1)求的單調(diào)區(qū)間;
(2)若設(shè),且有兩個(gè)極值點(diǎn) ,求取值范圍.(其中e為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列幾個(gè)式子,結(jié)果為 的序號(hào)是 ①tan25°+tan35° tan25°tan35°,
② ,
③2(sin35°cos25°+sin55°cos65°),
④ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f ( x)= x2 , g ( x)=a ln x(a>0).
(Ⅰ)求函數(shù) F ( x)=f(x)g(x)的極值
(Ⅱ)若函數(shù) G( x)=f(x)﹣g(x)+(a﹣1)在區(qū)間 ( ,e) 內(nèi)有兩個(gè)零點(diǎn),求的取值范圍;
(Ⅲ)函數(shù) h( x)=g ( x )﹣x+ ,設(shè) x1∈(0,1),x2∈(1,+∞),若 h( x 2)﹣h( x 1)存在最大值,記為 M (a),則當(dāng) a≤e+1 時(shí),M (a) 是否存在最大值?若存在,求出其最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,E是CD上一點(diǎn),AB=AD=3,AA1=2,CE=1,P是AA1上一點(diǎn),且DP∥平面AEB1 , F是棱DD1與平面BEP的交點(diǎn),則DF的長(zhǎng)為( )
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高中生共有2700人,其中高一年級(jí)900人,高二年級(jí)1200人,高三年級(jí)600人,現(xiàn)采取分層抽樣法抽取容量為135的樣本,那么高一,高二,高三各年級(jí)抽取的人數(shù)分別為( )
A.45,75,15
B.45,45,45
C.30,90,15
D.45,60,30
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com