射擊運動員在雙項飛碟比賽中,每輪比賽連續(xù)發(fā)射兩槍,擊中兩個飛靶得2分,擊中一個飛靶得1分,不擊中飛靶得0分,某射擊運動員在每輪比賽連續(xù)發(fā)射兩槍時,第一槍命中率為,第二槍命中率為,該運動員如進行2輪比賽.
(Ⅰ)求該運動員得4分的概率為多少?
(Ⅱ)若該運動員所得分?jǐn)?shù)為,求的分布列及數(shù)學(xué)期望.
,2
解:(I)設(shè)運動員得4分的事件為A,
則P(A)= .                                --------------------5分
(Ⅱ)設(shè)運動員得i分的事件為,
ξ的可能取值為0, 1, 2, 3,4 .--------------------------------------------------------------6分
P(ξ=0)=P(ξ=4)=,  ----------------------------------------------8分
P(ξ=" 1)" = P(ξ="3)" =,--10分
P(ξ=" 2)" =,   -- --------------------11分
ξ
0
1
2
3
4
P





ξ的分布列為:
-------------------12分
數(shù)學(xué)期望  Eξ=0×+1×+2×+3×+4×="2."        ------13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題14分)一個袋中有若干個大小相同的黑球、白球和紅球。已知從袋中任意摸出1個球,得到黑球的概率是;從袋中任意摸出2個球,至少得到1個白球的概率是。
(Ⅰ)若袋中共有10個球,
(i)求白球的個數(shù);
(ii)從袋中任意摸出3個球,記得到白球的個數(shù)為,求隨機變量的數(shù)學(xué)期望
(Ⅱ)求證:從袋中任意摸出2個球,至少得到1個黑球的概率不大于。并指出袋中哪種顏色的球個數(shù)最少。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

分別寫在六張卡片上,放在一盒子中。 (1)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得一個新函數(shù),求所得函數(shù)是奇函數(shù)的概率;(2)現(xiàn)從盒子中進行逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)卡片則停止抽取,否則繼續(xù)進行,求抽取次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)隨機變量具有分布P(=k)=,k=1,2,3,4,5,求E(+2)2,V(2-1),-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(本小題共13分)
  一廠家向用戶提供的一箱產(chǎn)品共10件,其中有2件次品,用戶先對產(chǎn)品進行抽檢以決定是否接收。抽檢規(guī)定是這樣的:一次取一件產(chǎn)品檢查,若前三次沒有抽查到次品,則用戶接收這箱產(chǎn)品,而前三次中只要抽查到次品就停止抽檢,并且用戶拒絕接收這箱產(chǎn)品。
  (I)求這箱產(chǎn)品被用戶拒絕接收的概率;
 。↖I)記表示抽檢的產(chǎn)品件數(shù),求的概率分布列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)貴陽六中織高二年級4個班的學(xué)生到益佰制藥廠、貴陽鋼廠、貴陽輪胎廠進行社會實踐,規(guī)定每個班只能在這3個廠中任選擇一個,假設(shè)每個班選擇每個廠的概率是等可能的。(Ⅰ)求3個廠都有班級選擇的概率;(Ⅱ)用表示有班級選擇的廠的個數(shù),求隨機變量的概率分布及數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一次英語單元測驗由20個選擇題構(gòu)成,每個選擇題有4個選項,其中有且僅有一個選項是正確答案,每題選擇正確答案得5分,不作出選擇或選錯不得分,滿分100分 學(xué)生甲選對任一題的概率為0.9,學(xué)生乙則在測驗中對每題都從4個選擇中隨機地選擇一個,求學(xué)生甲和乙在這次英語單元測驗中的成績的期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)有m升水,其中含有大腸桿菌n個.今取水1升進行化驗,設(shè)其中含有大腸桿菌的個數(shù)為ξ,則ξ的數(shù)學(xué)期望         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
東莞市政府要用三輛汽車從新市政府把工作人員接到老市政府,已知從新市政府到老市政府有兩條公路,汽車走公路①堵車的概率為,不堵車的概率為;汽車走公路②堵車的概率為,不堵車的概率為.若甲、乙兩輛汽車走公路①,丙汽車由于其他原因走公路②,且三輛車是否堵車相互之間沒有影響.
(1)若三輛汽車中恰有一輛汽車被堵的概率為,求走公路②堵車的概率;
(2)在(1)的條件下,求三輛汽車中被堵車輛的個數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案