已知,
(1)當(dāng);
(2)當(dāng),并畫出其圖象;
(3)求方程的解.

解:(1) g(x)==.
(2)  其圖象如右圖.

(3)x=或x=2.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
美國(guó)華爾街的次貸危機(jī)引起的金融風(fēng)暴席卷全球,低迷的市場(chǎng)造成產(chǎn)品銷售越來越難,為此某廠家舉行大型的促銷活動(dòng),經(jīng)測(cè)算該產(chǎn)品的銷售量P萬件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用萬元滿足,已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費(fèi)用),每件產(chǎn)品的銷售價(jià)格定為元.
(Ⅰ)將該產(chǎn)品的利潤(rùn)萬元表示為促銷費(fèi)用萬元的函數(shù)(利潤(rùn)=總售價(jià)-成本-促銷費(fèi));
(Ⅱ)促銷費(fèi)用投入多少萬元時(shí),廠家的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)求+的值,
(2):已知,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)某單位決定投資3 200元建一倉庫(長(zhǎng)方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每米長(zhǎng)造價(jià)40元,兩側(cè)墻砌磚,每米造價(jià)45元,屋頂每平方米造價(jià)20元,試計(jì)算:
(1)倉庫面積S的最大允許值是多少?
(2)為使S達(dá)到最大,而實(shí)際投資又不超過預(yù)算,那么正面鐵柵應(yīng)設(shè)計(jì)為多長(zhǎng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分) 已知二次函數(shù)軸有兩個(gè)交點(diǎn),若,且.
(Ⅰ)求此二次函數(shù)的解析式
(Ⅱ)若在閉區(qū)間的最大值為,求的解析式及其最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知二次函數(shù).
(1)若,,解關(guān)于x不等式;
(2)若f(x)的最小值為0,且A.<b,設(shè),請(qǐng)把表示成關(guān)于t的函數(shù)g(t),并求g(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)某城市自西向東和自南向北的兩條主干道的東南方位有一塊空地市規(guī)劃部門計(jì)劃利用它建設(shè)一個(gè)供市民休閑健身的小型綠化廣場(chǎng),如下圖所示是步行小道設(shè)計(jì)方案示意圖,

其中,分別表示自西向東,自南向北的兩條主干道.設(shè)計(jì)方案是自主干道交匯點(diǎn)處修一條步行小道,小道為拋物線的一段,在小道上依次以點(diǎn)
為圓心,修一系列圓型小道,這些圓型小道與主干道相切,且任意相鄰的兩圓彼此外切,若(單位:百米)且.
(1)記以為圓心的圓與主干道切于點(diǎn),證明:數(shù)列是等差數(shù)列,并求關(guān)于的表達(dá)式;
(2)記的面積為,根據(jù)以往施工經(jīng)驗(yàn)可知,面積為的圓型小道的施工工時(shí)為(單位:周).試問5周時(shí)間內(nèi)能否完成前個(gè)圓型小道的修建?請(qǐng)說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地區(qū)預(yù)計(jì)明年從年初開始的前個(gè)月內(nèi),對(duì)某種商品的需求總量(萬件)與月份的近似關(guān)系為.
(1)寫出明年第個(gè)月的需求量(萬件)與月份的函數(shù)關(guān)系式,并求出哪個(gè)月份的需求量超過1.4萬件;
(2)如果將該商品每月都投放市場(chǎng)p萬件,要保持每月都滿足市場(chǎng)需求,則p至少為多少萬件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/31/7/iruas3.png" style="vertical-align:middle;" />,值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e2/2/mirjo.png" style="vertical-align:middle;" />,
(1)求證:
(2)求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案