(2013•永州一模)已知函數(shù)f(x)=mlnx+
1
x
,(其中m為常數(shù))
(1)試討論f(x)在區(qū)間(0,+∞)上的單調性;
(2)令函數(shù)h(x)=f(x)+
1
m
lnx
-x.當m∈[2,+∞)時,曲線y=h(x)上總存在相異兩點P(x1,f(x1))、Q(x2,f(x2)),使得過P、Q點處的切線互相平行,求x1+x2的取值范圍.
分析:(1)求導函數(shù),對m分類討論,利用導數(shù)的正負,即可得到f(x)在區(qū)間(0,+∞)上的單調性;
(2)利用過P、Q點處的切線互相平行,建立方程,結合基本不等式,再求最值,即可求x1+x2的取值范圍.
解答:解:(1)∵f′(x)=
m
x
-
1
x2
=
mx-1
x2
(x>0)
∴m≤0時,f′(x)<0,f(x)在區(qū)間(0,+∞)上是減函數(shù);
m>0時,f′(x)>0可得x>
1
m
,f′(x)<0可得x<
1
m

∴函數(shù)f(x)在(0,
1
m
)上是減函數(shù),在(
1
m
,+∞)上是增函數(shù);
(2)由題意,可得h′(x1)=h′(x2)(x1,x2>0,且x1≠x2
m+
1
m
x1
-
1
x12
-1
=
m+
1
m
x2
-
1
x22
-1
 
x1+x2=(m+
1
m
)x1x2
    
∵x1≠x2,由不等式性質可得x1x2<(
x1+x2
2
)2
恒成立,
又x1,x2,m>0
x1+x2<(m+
1
m
)(
x1+x2
2
)2

x1+x2
4
m+
1
m
對m∈[2,+∞)恒成立
令g(m)=m+
1
m
(m≥2),則g′(m)=
(m+1)(m-1)
m2
>0
對m∈[2,+∞)恒成立
∴g(m)在[2,+∞)上單調遞增,∴g(m)≥g(2)=
5
2
             
4
m+
1
m
4
g(2)
=
8
5
                                
∴x1+x2的取值范圍為(
8
5
,+∞
).
點評:本題考查導數(shù)知識的運用,考查函數(shù)的單調性,考查函數(shù)的最值,考查分類討論的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•永州一模)提高大橋的車輛通行能力可改善整個城市的交通狀況.一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當車流密度不超過50輛/千米時,車流速度為30千米/小時.研究表明:當50<x≤200時,車流速度v與車流密度x滿足v(x)=40-
k
250-x
.當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0千米/小時.
(Ⅰ)當0<x≤200時,求函數(shù)v(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內通過橋上觀測點的車輛數(shù),單位:輛/小時)f(x)=x•v(x)可以達到最大,并求出最大值.(精確到個位,參考數(shù)據
5
≈2.236

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•永州一模)已知A,B是圓C(為圓心)上的兩點,|
AB
|=2,則
AB
AC
=
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•永州一模)設集合A={x|-1<x<2},B={x|x2≤1},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•永州一模)“x≠3”是“|x-3|>0”的( 。

查看答案和解析>>

同步練習冊答案