【題目】點M(20,40),拋物線y2=2px(p>0)的焦點為F,若對于拋物線上的任意點P,|PM|+|PF|的最小值為41,則p的值等于 .
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在Z上的函數(shù)f(x),對任意x,y∈Z,都有f(x+y)+f(x﹣y)=4f(x)f(y)且f(1)= ,則f(0)+f(1)+f(2)+…+f(2017)= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正四棱錐P﹣ABCD中,PA=AB=a,E是棱PC的中點.
(1)求證:PC⊥BD;
(2)求直線BE與PA所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某海濱城市附近海面有一臺風,據(jù)監(jiān)測,當前臺風中心位于城市A(看做一點)的東偏南θ角方向 ,300km的海面P處,并以20km/h的速度向西偏北45°方向移動.臺風侵襲的范圍為圓形區(qū)域,當前半徑為60km,并以10km/h的速度不斷增大.
(1)問10小時后,該臺風是否開始侵襲城市A,并說明理由;
(2)城市A受到該臺風侵襲的持續(xù)時間為多久?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC中,AC=1, ,設(shè)∠BAC=x,記 ;
(1)求函數(shù)f(x)的解析式及定義域;
(2)試寫出函數(shù)f(x)的單調(diào)遞增區(qū)間,并求方程 的解.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+2|﹣|x+1|,無窮數(shù)列{an}的首項a1=a.
(1)如果an=f(n)(n∈N*),寫出數(shù)列{an}的通項公式;
(2)如果an=f(an﹣1)(n∈N*且n≥2),要使得數(shù)列{an}是等差數(shù)列,求首項a的取值范圍;
(3)如果an=f(an﹣1)(n∈N*且n≥2),求出數(shù)列{an}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè) (a,b為實常數(shù)).
(1)當a=b=1時,證明:f(x)不是奇函數(shù);
(2)設(shè)f(x)是奇函數(shù),求a與b的值;
(3)當f(x)是奇函數(shù)時,研究是否存在這樣的實數(shù)集的子集D,對任何屬于D的x、c,都有f(x)<c2﹣3c+3成立?若存在試找出所有這樣的D;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖的程序框圖表示的算法中,輸入三個實數(shù)a,b,c,要求輸出的x是這三個數(shù)中最大的數(shù),那么在空白的判斷框中,應(yīng)該填入( )
A.x>c
B.c>x
C.c>b
D.c>a
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)y=f(x)滿足:函數(shù)y=f(x+1)的圖象關(guān)于直線x=﹣1對稱,且當x∈(﹣∞,0)時,f(x)+xf′(x)<0成立(f′(x)是函數(shù)f(x)的導函數(shù)),若a=0.76f(0.76),b=log 6f(log 6),c=60.6f(60.6),則a,b,c的大小關(guān)系是( )
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com