【題目】如圖所示,使電路接通,開關(guān)不同的開閉方式有( )
A. 11種B. 20種
C. 21種D. 12種
【答案】C
【解析】
試題設(shè)5個開關(guān)依次為1、2、3、4、5,由電路知識分析可得電路接通,則開關(guān)1、2與3、4、5中至少有1個接通,依次分析開關(guān)1、2與3、4、5中至少有1個接通的情況數(shù)目,由分步計數(shù)原理,計算可得答案.
解:根據(jù)題意,設(shè)5個開關(guān)依次為1、2、3、4、5,若電路接通,則開關(guān)1、2與3、4、5中至少有1個接通,對于開關(guān)1、2,共有2×2=4種情況,其中全部斷開的有1種情況,則其至少有1個接通的有4-1=3種情況,對于開關(guān)3、4、5,共有2×2×2=8種情況,其中全部斷開的有1種情況,則其至少有1個接通的8-1=7種情況,則電路接通的情況有3×7=21種;故選C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱 ABC﹣A1B1C1 中,AB 1 ,若二面角 C AB C1 的大小為 60°,則點 C 到平面 ABC1 的距離為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)面底面,是邊長為2的正三角形,已知點滿足.
(1)求二面角的大小;
(2)求異面直線與的距離;
(3)直線上是否存在點,使平面?若存在,請確定點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為常數(shù),函數(shù)
(1)過坐標(biāo)原點作曲線的切線,設(shè)切點為,求;
(2)令,若函數(shù)在區(qū)間上是單調(diào)減函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為.以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)若,求曲線的直角坐標(biāo)方程以及直線的極坐標(biāo)方程;
(2)設(shè)點,曲線與直線交于兩點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點,過A作兩條不同直線,其中直線關(guān)于直線對稱.
(1)求拋物線E的方程及其準(zhǔn)線方程;
(2)設(shè)直線分別交拋物線E于兩點(均不與A重合),若以線段為直徑的圓與拋物線E的準(zhǔn)線相切,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.命題“”的否定是“”
B.命題“已知,若則或”是真命題
C.命題“若則函數(shù)只有一個零點”的逆命題為真命題
D.“在上恒成立”在上恒成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩人進行射擊比賽,各射擊局,每局射擊次,射擊中目標(biāo)得分,未命中目標(biāo)得分,兩人局的得分情況如下:
甲 | ||||
乙 |
(1)若從甲的局比賽中,隨機選取局,求這局的得分恰好相等的概率;
(2)從甲,乙兩人的局比賽中隨機各選取局,記這局的得分和為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com