已知函數(shù)的最大值不大于,又當時,

(1)a的值;

(2),.證明

答案:略
解析:

(1)解:由于的最大值不大于,所以,

.              ①

,所以

解得.             、

由①②得a=1

(2)證法一:①當n=1時,,不等式成立;

f(x)0,,所以,故n=2時不等式也成立.

②假設n=k(k2)時,不等式成立,因為的對稱軸為,知f(x)為增函數(shù),所以由

于是有

所以當n=k1時,不等式也成立.

根據(jù)①②可知,對任何,不等式成立.

證法二:①當n=1時,,不等式成立;

②假設n=k(k1)時不等式成立,即,則當n=k1時,

,,所以

于是.因此當n=k1時,不等式也成立.

根據(jù)①②可知,對任何,不等式成立.


提示:

解析:本小題主要考查函數(shù)和不等式的概念,考查數(shù)學歸納法,以及靈活運用數(shù)學方法分析和解決問題的能力.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)的最大值不大于,又當,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)的最大值不大于,又當,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:2004年遼寧省高考數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)的最大值不大于,又當
(1)求a的值;
(2)設.證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)的最大值不大于,又當

   (1)求a的值;

   (2)設

查看答案和解析>>

科目:高中數(shù)學 來源:高考數(shù)學一輪復習必備(第103課時):第十三章 導數(shù)-導數(shù)小結(jié)(解析版) 題型:解答題

已知函數(shù)的最大值不大于,又當時,,則a=   

查看答案和解析>>

同步練習冊答案