已知過點(diǎn)A(0,4)的直線l與以F為焦點(diǎn)的拋物線C:x2=py相切于點(diǎn)T(-4,yo);中心在坐標(biāo)原點(diǎn),一個(gè)焦點(diǎn)為F的橢圓與直線l有公共點(diǎn).
(1)求直線l的方程和焦點(diǎn)F的坐標(biāo);
(2)求當(dāng)橢圓的離心率最大時(shí)橢圓的方程;
(3)設(shè)點(diǎn)M(x1,yl)是拋物線C上任意一點(diǎn),D(0,-2)為定點(diǎn),是否存在垂直于y軸的直線l′被以MD為直徑的圓截得的弦長為定值?請說明理由.
【答案】分析:(1)求導(dǎo)函數(shù),利用過點(diǎn)A(0,4)的直線l與以F為焦點(diǎn)的拋物線C:x2=py相切于點(diǎn)T(-4,yo),即可求得直線l的方程和焦點(diǎn)F的坐標(biāo);
(2)先確定,從而當(dāng)e最大時(shí),a取得最小,即在直線l上找一點(diǎn)P,使得|PF1|+|PF2|最小,求出F2(0,-1)關(guān)于2x-y+4=0對稱點(diǎn)的坐標(biāo),即可求橢圓方程;
(3)假設(shè)l′存在為y=b,求出以MD為直徑的圓N的圓心坐標(biāo),求出半徑為r、N到直線l′的距離,從而可計(jì)算弦長,即可得到結(jié)論.
解答:解:(1)∵,∴,∴l(xiāng):
∵直線l過點(diǎn)A(0,4),∴,∴p=-4
∴l(xiāng)的方程為2x-y+4=0,焦點(diǎn)F的坐標(biāo)為(0,-1)…(4分)
(2)設(shè)橢圓為=1(a>1),F(xiàn)1(0,1),F(xiàn)2(0,-1),則,當(dāng)e最大時(shí),a取得最小
則在直線l上找一點(diǎn)P,使得|PF1|+|PF2|最小
設(shè)F2(0,-1)關(guān)于2x-y+4=0對稱點(diǎn)為F2′(x,y)     …(6分)
,解得
…(8分)
∴所求橢圓方程為…(9分)
(3)假設(shè)l′存在為y=b,以MD為直徑的圓N的圓心為N
半徑為r=|ND|=…l0分
N到直線l′的距離為d=

∴弦長=…(12分)
∴當(dāng)b=-1時(shí),弦長為定值2                             …(13分)
即l′為y=-1時(shí),垂直于y軸的直線l′被以MD為直徑 的圓截得的弦長為定值2.…(14分)
點(diǎn)評:本題考查直線、拋物線、橢圓方程的求解,考查弦長的計(jì)算,考查對稱點(diǎn)的求解,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知過點(diǎn)A(0,1),B(4,a)且與x軸相切的圓只有一個(gè),求a的值及所對應(yīng)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過點(diǎn)A(0,4)的直線l與以F為焦點(diǎn)的拋物線C:x2=py相切于點(diǎn)T(-4,yo);中心在坐標(biāo)原點(diǎn),一個(gè)焦點(diǎn)為F的橢圓與直線l有公共點(diǎn).
(1)求直線l的方程和焦點(diǎn)F的坐標(biāo);
(2)求當(dāng)橢圓的離心率最大時(shí)橢圓的方程;
(3)設(shè)點(diǎn)M(x1,yl)是拋物線C上任意一點(diǎn),D(0,-2)為定點(diǎn),是否存在垂直于y軸的直線l′被以MD為直徑的圓截得的弦長為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知過點(diǎn)A(0,1),B(4,a)且與x軸相切的圓只有一個(gè),求a的值及所對應(yīng)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年云南省高中學(xué)業(yè)水平考試增分測試數(shù)學(xué)試卷(二)(必修2)(解析版) 題型:解答題

已知過點(diǎn)A(0,1),B(4,a)且與x軸相切的圓只有一個(gè),求a的值及所對應(yīng)的圓的方程.

查看答案和解析>>

同步練習(xí)冊答案