10.要把半徑為半圓形木料截成長(zhǎng)方形,為了使長(zhǎng)方形截面面積最大,則圖中的α=( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{5π}{12}$D.$\frac{π}{6}$

分析 由題意,長(zhǎng)方形截面面積S=2Rcosα•Rsinα=R2sin2α,由此可得結(jié)論.

解答 解:由題意,長(zhǎng)方形截面面積S=2Rcosα•Rsinα=R2sin2α,
∴sin2α=1,$α=\frac{π}{4}$時(shí),長(zhǎng)方形截面面積最大,
故選A.

點(diǎn)評(píng) 本題考查長(zhǎng)方形截面面積的計(jì)算,考查三角函數(shù)知識(shí),比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在圓的方程x2+y2+Dx+Ey+F=0中,若D2=E2>4F,則圓的位置滿足( 。
A.截兩坐標(biāo)軸所得弦的長(zhǎng)度相等B.與兩坐標(biāo)軸都相切
C.與兩坐標(biāo)軸相離D.上述情況都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(1)已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線$\sqrt{7}$x-$\sqrt{5}$y+12=0相切.求橢圓C的方程;
(2)已知⊙A1:(x+2)2+y2=12和點(diǎn)A2(2,0),求過(guò)點(diǎn)A2且與⊙A1相切的動(dòng)圓圓心P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知a=cos61°•cos127°+cos29°•cos37°,$b=\frac{{2tan{{13}°}}}{{1+{{tan}^2}{{13}°}}}$,$c=\sqrt{\frac{{1-cos{{50}°}}}{2}}$,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.a>b>cC.c>a>bD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)是定義在[0,+∞)上的增函數(shù),則滿足不等式f(2x-1)<f($\frac{1}{3}$)的實(shí)數(shù)x的取值范圍是(  )
A.(-∞,$\frac{2}{3}$)B.[$\frac{1}{3}$,$\frac{2}{3}$)C.($\frac{1}{2}$,+∞)D.[$\frac{1}{2}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.將函數(shù)y=cos(2x+φ)的圖象向右平移$\frac{π}{3}$個(gè)單位,得到的函數(shù)為奇函數(shù),則|φ|的最小值( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知實(shí)數(shù)x>0,y>0,且滿足x+y=1,則$\frac{2}{x}$+$\frac{x}{y}$的最小值為2+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)F1、F2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),P是雙曲線C的右支上的點(diǎn),射線PQ平分∠F1PF2交x軸于點(diǎn)Q,過(guò)原點(diǎn)O作PQ的平行線交PF1于點(diǎn)M,若|MP|=$\frac{1}{4}$|F1F2|,則C的離心率為(  )
A.$\frac{3}{2}$B.3C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,已知四棱錐P-ABCD,地面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中點(diǎn).
(I)證明:AE⊥PD;
(II)若AB=2,AP=2,在線段PC上是否存在點(diǎn)F使二面角E-AF-C的余弦值為$\frac{\sqrt{15}}{5}$?若存在,請(qǐng)確定點(diǎn)F的位置,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案