如圖所示,在棱長為2的正方體內(nèi)(含正方體表面)任取一點(diǎn),則的概率(   )
A.B.C.D.
A

試題分析:根據(jù)題意,由于在棱長為2的正方體內(nèi)(含正方體表面)任取一點(diǎn),則,根據(jù)題意點(diǎn)Z的范圍是[0,2]那么可知滿足題意的概率值為,故答案為A.
點(diǎn)評(píng):主要是考查了空間向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m,n是不同的直線,是不同的平面,下列命題中正確的是
A.若m//
B.若m//
C.若m//
D.若m//

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是正方形,底面,且PA=AB.

(1)求證:BD平面PAC;
(2)求異面直線BC與PD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在正三角形中,、、分別是、邊上的點(diǎn),滿足(如圖1).將△沿折起到的位置,使二面角成直二面角,連結(jié)、(如圖2)
    
(Ⅰ)求證:⊥平面;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,平面PAD⊥平面ABCD
PA=BC=1,PD=AB=,E、F分別為線段PDBC的中點(diǎn).

(Ⅰ) 求證:CE∥平面PAF;
(Ⅱ)在線段BC上是否存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°?若存在,試確定G的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方體中,的中點(diǎn).

(1)求證:平面;
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知正方形的邊長為,將沿對角線折起,使平面平面,得到如圖所示的三棱錐.若邊的中點(diǎn),,分別為線段上的動(dòng)點(diǎn)(不包括端點(diǎn)),且.設(shè),則三棱錐的體積的函數(shù)圖象大致是


A.                B.                  C.                 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是兩條異面直線,是兩個(gè)不同平面,,,則
A.分別相交B.都不相交
C.至多與中一條相交D.至少與中的一條相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,M、N分別是AB、PC的中點(diǎn),且.證明:平面PAD⊥平面PDC.

查看答案和解析>>

同步練習(xí)冊答案