【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

當(dāng)時(shí),求函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù).

【答案】(1)見解析;(2)見解析

【解析】

1)先對(duì)函數(shù)求導(dǎo),分別討論,,即可得出結(jié)果;

(2)先由(1)得時(shí),函數(shù)的最大值,分別討論,,,即可結(jié)合題中條件求出結(jié)果.

解:(1) , ,

當(dāng)時(shí),

當(dāng)時(shí),,

當(dāng)時(shí),;當(dāng)時(shí),

當(dāng)時(shí),上單調(diào)遞減;

當(dāng)時(shí),上單調(diào)遞增,上單調(diào)遞減.

(2)由(1)得,

當(dāng),即時(shí),函數(shù)內(nèi)有無(wú)零點(diǎn);

當(dāng),即時(shí),函數(shù)內(nèi)有唯一零點(diǎn)

,所以函數(shù)內(nèi)有一個(gè)零點(diǎn);

當(dāng),即時(shí),由于,,

,即時(shí),,由函數(shù)單調(diào)性知

使得使得,

故此時(shí)函數(shù)內(nèi)有兩個(gè)零點(diǎn);

,即時(shí),

,,

由函數(shù)的單調(diào)性可知內(nèi)有唯一的零點(diǎn),在內(nèi)沒有零點(diǎn),從而內(nèi)只有一個(gè)零點(diǎn)

綜上所述,當(dāng)時(shí),函數(shù)內(nèi)有無(wú)零點(diǎn);

當(dāng)時(shí),函數(shù)內(nèi)有一個(gè)零點(diǎn);

當(dāng)時(shí),函數(shù)內(nèi)有兩個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象與直線相切于點(diǎn)

()的值;

()求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)判斷函數(shù)的奇偶性并說(shuō)明理由;

2)當(dāng)時(shí),判斷函數(shù)上的單調(diào)性,并利用單調(diào)性的定義證明;

3)是否存在實(shí)數(shù),使得當(dāng)的定義域?yàn)?/span>時(shí),值域?yàn)?/span>?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓的上頂點(diǎn)為,右焦點(diǎn)為,直線與圓相切.

(1)求橢圓的方程;

(2)不過(guò)點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn),且.求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:經(jīng)過(guò)點(diǎn),離心率為.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),為橢圓的左焦點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】耐鹽堿水稻俗稱“海水稻”,是一種可以長(zhǎng)在灘涂和鹽堿地的水稻。還水稻的灌溉是將海水稀釋后進(jìn)行灌溉。某實(shí)驗(yàn)基礎(chǔ)為了研究海水濃度)對(duì)畝產(chǎn)量(噸)的影響,通過(guò)在試驗(yàn)田的種植實(shí)驗(yàn),測(cè)得了某種還水稻的畝產(chǎn)量與海水濃度的數(shù)據(jù)如下表:

海水濃度

畝產(chǎn)量(噸)

繪制散點(diǎn)圖發(fā)現(xiàn),可用線性回歸模型擬合畝產(chǎn)量與海水濃度之間的相關(guān)關(guān)系,用最小二乘法計(jì)算得之間的線性回歸方程為.

(1)求出的值,并估算當(dāng)澆灌海水濃度為8%時(shí)該品種的畝產(chǎn)量。

(2)①完成下列殘差表:

海水濃度

畝產(chǎn)量(噸)

殘差

②統(tǒng)計(jì)學(xué)中常用相關(guān)指數(shù)來(lái)刻畫回歸效果,越大,模型擬合效果越好,如假設(shè),就說(shuō)明預(yù)報(bào)變量的差異有是由解釋變量引起的.請(qǐng)計(jì)算相關(guān)指數(shù)(精確到0.01),并指出畝產(chǎn)量的變化多大程度上是由澆灌海水濃度引起的.

(附:殘差公式,相關(guān)指數(shù),參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,是過(guò)定點(diǎn)且傾斜角為的直線;在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,取相同單位長(zhǎng)度)中,曲線的極坐標(biāo)方程為.

(1)寫出直線的參數(shù)方程,并將曲線的方程化為直角坐標(biāo)方程;

(2)若曲線與直線相交于不同的兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)是實(shí)數(shù)集上的奇函數(shù),當(dāng)時(shí),

(1)求的值和函數(shù)的表達(dá)式;

(2)求方程上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.

(1)求出f(5)的值;

(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式;

(3)求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案