14.已知橢圓$\frac{x^2}{4}$+y2=1,A,B,C,D為橢圓上四個(gè)動(dòng)點(diǎn),且AC,BD相交于原點(diǎn)O,設(shè)A(x1,y1),B(x2,y2)滿足$\frac{{{y_1}{y_2}}}{{\overrightarrow{OA}•\overrightarrow{OB}}}$=$\frac{1}{5}$.
(1)求證:$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{0}$;
(2)kAB+kBC的值是否為定值,若是,請(qǐng)求出此定值,并求出四邊形ABCD面積的最大值,否則,請(qǐng)說(shuō)明理由.

分析 (1)由題意可得四邊形ABCD為平行四邊形,故$\overrightarrow{AB}=-\overrightarrow{CD}$,即$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{0}$;
(2)由$\frac{{{y_1}{y_2}}}{{\overrightarrow{OA}•\overrightarrow{OB}}}$=$\frac{1}{5}$,得4y1y2=x1x2,若直線AB的斜率不存在(或AB的斜率為0時(shí)),不滿足4y1y2=x1x2;當(dāng)直線AB的斜率存在且不為0時(shí),設(shè)直線方程為y=kx+m,A(x1,y1),B(x2,y2).聯(lián)立直線方程和橢圓方程,化為關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系求得A,B的橫坐標(biāo)的和與積,結(jié)合4y1y2=x1x2
求得k,把三角形AOB的面積化為關(guān)于m的函數(shù),利用基本不等式求其最值,進(jìn)一步得到四邊形ABCD面積的最大值.

解答 (1)證明:分別連接AB、BC、CD、AD,∵AC、BD相交于原點(diǎn)O,
根據(jù)橢圓的對(duì)稱性可知,AC、BD互相平分,且原點(diǎn)O為它們的中點(diǎn).
則四邊形ABCD為平行四邊形,故$\overrightarrow{AB}=-\overrightarrow{CD}$,即$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{0}$;
(2)解:∵$\frac{{{y_1}{y_2}}}{{\overrightarrow{OA}•\overrightarrow{OB}}}$=$\frac{1}{5}$,∴4y1y2=x1x2,
若直線AB的斜率不存在(或AB的斜率為0時(shí)),不滿足4y1y2=x1x2;
直線AB的斜率存在且不為0時(shí),設(shè)直線方程為y=kx+m,A(x1,y1),B(x2,y2).
聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,得(1+4k2)x2+8kmx+4(m2-1)=0.
△=(8km)2-4(1+4k2)(4m2-4)=16(4k2-m2+1)>0,①
${x}_{1}+{x}_{2}=\frac{-8km}{1+4{k}^{2}},{x}_{1}{x}_{2}=\frac{4({m}^{2}-1)}{1+4{k}^{2}}$.
∵4y1y2=x1x2,又${y}_{1}{y}_{2}=(k{x}_{1}+m)(k{x}_{2}+m)={k}^{2}{x}_{1}{x}_{2}+km({x}_{1}+{x}_{2})+{m}^{2}$,
∴$(4{k}^{2}-1){x}_{1}{x}_{2}+4km({x}_{1}+{x}_{2})+4{m}^{2}=0$,
即$(4{k}^{2}-1)\frac{4({m}^{2}-1)}{1+4{k}^{2}}+4km(\frac{-8km}{1+4{k}^{2}})+4{m}^{2}=0$.
整理得:k=$±\frac{1}{2}$.
∵A、B、C、D的位置可以輪換,∴AB、BC的斜率一個(gè)是$\frac{1}{2}$,另一個(gè)就是$-\frac{1}{2}$.
∴kAB+kBC=$\frac{1}{2}-\frac{1}{2}=0$,是定值.
不妨設(shè)${k}_{AB}=-\frac{1}{2}$,則${x}_{1}+{x}_{2}=2m,{x}_{1}{x}_{2}=2({m}^{2}-1)$.
設(shè)原點(diǎn)到直線AB的距離為d,則${S}_{△AOB}=\frac{1}{2}|AB|•d=\frac{1}{2}\sqrt{1+{k}^{2}}|{x}_{1}-{x}_{2}|•\frac{|m|}{\sqrt{1+{k}^{2}}}$
=$\frac{|m|}{2}\sqrt{4{m}^{2}-4•2({m}^{2}-1)}=\sqrt{{m}^{2}(2-{m}^{2})}$≤1.
當(dāng)m2=1時(shí)滿足①取等號(hào).
∴S四邊形ABCD=4S△AOB≤4,即四邊形ABCD面積的最大值為4.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查了直線與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了利用基本不等式求最值,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知某正方體的外接球的表面積是16π,則這個(gè)正方體的棱長(zhǎng)是(  )
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{4\sqrt{2}}}{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知△ABC為等邊三角形,則<$\overrightarrow{AB}$,$\overrightarrow{BC}$>=( 。
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=ax-2$\sqrt{4-{a}^{x}}$-1(a>1).
(1)若a=2,求函數(shù)f(x)的定義域、值域;
(2)若函數(shù)f(x)滿足:對(duì)于任意x∈(-∞,1],都有f(x)+1≤0.試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖,在平行四邊形ABCD中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{AN}=3\overrightarrow{NC}$,則$\overrightarrow{BN}$=(  )
A.$\frac{3}{4}\overrightarrow b+\frac{1}{4}\overrightarrow a$B.$\frac{1}{4}\overrightarrow b+\frac{3}{4}\overrightarrow a$C.$\frac{3}{4}\overrightarrow b-\frac{1}{4}\overrightarrow a$D.$\frac{1}{4}\overrightarrow b-\frac{3}{4}\overrightarrow a$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=ln(x+1),g(x)=kx(k∈R).
(1)證明:當(dāng)x>0時(shí),f(x)<x;
(2)證明:當(dāng)k<1時(shí),存在x0>0,使得對(duì)任意的x∈(0,x0),恒有f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知命題p,q,則“p或q是真命題”是“¬p為假命題”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知集合A={0,1,2},B={x|x2-x≤0},則A∩B={0,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若數(shù)列{an}滿足關(guān)系:an+1=1+$\frac{1}{a_n}$,a1=1,則a3=( 。
A.$\frac{8}{5}$B.$\frac{3}{2}$C.$\frac{5}{3}$D.$\frac{13}{8}$

查看答案和解析>>

同步練習(xí)冊(cè)答案