【題目】甲、乙兩所學(xué)校進行同一門課程的考試,按照學(xué)生考試成績優(yōu)秀和不優(yōu)秀統(tǒng)計成績后,得到如下列聯(lián)表:

班級與成績列聯(lián)表

優(yōu)秀

不優(yōu)秀

總計

甲隊

80

40

120

乙隊

240

200

240

合計

320

240

560

(1)能否在犯錯誤的概率不超過0.025的前提下認為成績與學(xué)校有關(guān)系;

(2)采用分層抽樣的方法在兩所學(xué)校成績優(yōu)秀的320名學(xué)生中抽取16名同學(xué).現(xiàn)從這16名同學(xué)中隨機抽取3名運同學(xué)作為成績優(yōu)秀學(xué)生代表介紹學(xué)習(xí)經(jīng)驗,記這3名同學(xué)來自甲學(xué)校的人數(shù)為,求的分布列與數(shù)學(xué)期望.附:

參考數(shù)據(jù):

,其中.

【答案】(1)能;(2).

【解析】

(1)根據(jù)列聯(lián)表做出觀測值,把觀測值同臨界值進行比較,得到有能在犯錯誤的概率不超過0.025的前提下認為成績與所在學(xué)校有關(guān)系;

(2)確定ξX的取值,求出相應(yīng)的概率,可得分布列和數(shù)學(xué)期望.

(1)由題意得K2=≈5.657>5.

能在犯錯誤的概率不超過0.025的前提下認為成績與所在學(xué)校有關(guān)系.

(2)16名同學(xué)中有甲學(xué)校有4人,乙學(xué)校有12人,

X的可能取值為0,1,2,3

P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==

X的分布列為

X

0

1

2

3

P

∴EX=0×+1×+2×+3×=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:

試銷單價(元)

4

5

6

7

8

9

產(chǎn)品銷量(件)

q

84

83

80

75

68

已知.

(Ⅰ)求出的值;

(Ⅱ)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(元)的線性回歸方程;

(Ⅲ)用表示用(Ⅱ)中所求的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計值.當(dāng)銷售數(shù)據(jù)對應(yīng)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取2個,求“好數(shù)據(jù)”至少有一個的概率.

(參考公式:線性回歸方程中,的最小二乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,為坐標原點,動點在圓外,過點作圓的切線,設(shè)切點為.

(1)若點運動到處,求此時切線的方程;

(2)求滿足的點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓上任意一點到兩焦點距離之和為,離心率為

(1)求橢圓的標準方程;

(2)若直線的斜率為,直線與橢圓C交于兩點.點為橢圓上一點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

2當(dāng)時,方程在區(qū)間內(nèi)有唯一實數(shù)解,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地有一企業(yè)2007年建廠并開始投資生產(chǎn),年份代號為7,2008年年份代號為8,依次類推.經(jīng)連續(xù)統(tǒng)計9年的收入情況如下表(經(jīng)數(shù)據(jù)分析可用線性回歸模型擬合的關(guān)系):

年份代號(

7

8

9

10

11

12

13

14

15

當(dāng)年收入(千萬元)

13

14

18

20

21

22

24

28

29

(Ⅰ)求關(guān)于的線性回歸方程

(Ⅱ)試預(yù)測2020年該企業(yè)的收入.

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,為棱的中點.

1)求證:平面

2)試判斷與平面是否平行?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與直線,動直線過定點.

1)若直線與圓相切,求直線的方程;

2)若直線與圓相交于兩點,點MPQ的中點,直線與直線相交于點N.探索是否為定值,若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場預(yù)計全年分批購入電視機3600臺,其中每臺價值2000元,每批購入的臺數(shù)相同,且每批均需付運費400元,儲存購入的電視機全年所付保管費與每批購入的電視機的總價值(不含運費)成正比,比例系數(shù)為,若每批購入400臺,則全年需要支付運費和保管費共43600.

1)求的值;

2)請問如何安排每批進貨的數(shù)量,使支付運費與保管費的和最少?并求出相應(yīng)最少費用.

查看答案和解析>>

同步練習(xí)冊答案