【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若,求的取值范圍.

【答案】(1)見解析;(2).

【解析】

1)求出,分a=0a0時(shí),判斷函數(shù)的單調(diào)性即可.(2)當(dāng)a0時(shí),fx)=﹣≤0,符合題意,當(dāng)a0時(shí),利用函數(shù)的最值列出不等式,求解即可;

1)由

當(dāng)a=0時(shí),fx)在(0,+∞)上遞減,

當(dāng)a0時(shí),令f'x)=0(負(fù)根舍去),

f'x)>0;令f'x)<0,

所以fx)在上遞增,在上遞減.

綜上:a=0時(shí), fx)在(0,+∞)上遞減,

a0時(shí),fx)在上遞增,在上遞減

2)由(1)當(dāng)a0時(shí),fx)=﹣≤0,符合題意,

當(dāng)a0時(shí),,因?yàn)?/span>a0,所以,

,則函數(shù)單調(diào)遞增,又 ,故

綜上,a的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某企業(yè)的兩座建筑物ABCD的高度分別為20m和40m,其底部BD之間距離為20m.為響應(yīng)創(chuàng)建文明城市號(hào)召,進(jìn)行亮化改造,現(xiàn)欲在建筑物AB的頂部A處安裝一投影設(shè)備,投影到建筑物CD上形成投影幕墻,既達(dá)到亮化目的又可以進(jìn)行廣告宣傳.已知投影設(shè)備的投影張角∠EAF,投影幕墻的高度EF越小,投影的圖像越清晰.設(shè)投影光線的上邊沿AE與水平線AG所成角為α,幕墻的高度EFy(m).

(1)求y關(guān)于α的函數(shù)關(guān)系式,并求出定義域;

(2)當(dāng)投影的圖像最清晰時(shí),求幕墻EF的高度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月對(duì)甲、乙兩種移動(dòng)支付方式的使用情況,從全校學(xué)生中隨機(jī)抽取了100人作為樣本,發(fā)現(xiàn)樣本中甲、乙兩種支付方式都不使用的有10人,樣本中僅使用甲種支付方式和僅使用乙種支付方式的學(xué)生的支付金額分布情況如下:

支付金額(元)

支付方式

大于1000

僅使用甲

15人

8人

2人

僅使用乙

10人

9人

1人

(1)從全校學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生上個(gè)月甲、乙兩種支付方式都使用的概率;

(2)從樣本中僅使用甲種支付方式和僅使用乙種支付方式的學(xué)生中各隨機(jī)抽取1人,以表示這2人中上個(gè)月支付金額大于500元的人數(shù),用頻率近似代替概率,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為,為坐標(biāo)原點(diǎn)).

1)求橢圓的方程;

2)定義:曲線在點(diǎn)處的切線方程為.若拋物線上存在點(diǎn)(不與原點(diǎn)重合)處的切線交橢圓于兩點(diǎn),線段的中點(diǎn)為.直線與過點(diǎn)且平行于軸的直線的交點(diǎn)為,證明:點(diǎn)必在定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明非常喜歡葫蘆娃七兄弟的人偶玩具,小明的媽媽答應(yīng)小明買其中的兩個(gè),面對(duì)紅、橙、黃、綠、青、藍(lán)、紫七個(gè)造型各異的玩偶小明舉棋不定.

(1)請(qǐng)列舉出小明購買人偶的所有結(jié)果;

(2)事件A為“小明至少從紅、橙、黃三個(gè)人偶中購買一個(gè)”,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當(dāng)a﹤0時(shí),證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】節(jié)能減排以來,蘭州市100戶居民的月平均用電量單位:度,以分組的頻率分布直方圖如圖.

求直方圖中x的值;求月平均用電量的眾數(shù)和中位數(shù);

估計(jì)用電量落在中的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某球迷為了解兩支球隊(duì)的攻擊能力,從本賽季常規(guī)賽中隨機(jī)調(diào)查了20場(chǎng)與這兩支球隊(duì)有關(guān)的比賽.兩隊(duì)所得分?jǐn)?shù)分別如下:

球隊(duì):122 110 105 105 109 101 107 129 115 100

114 118 118 104 93 120 96 102 105 83

球隊(duì):114 114 110 108 103 117 93 124 75 106

91 81 107 112 107 101 106 120 107 79

(1)根據(jù)兩組數(shù)據(jù)完成兩隊(duì)所得分?jǐn)?shù)的莖葉圖,并通過莖葉圖比較兩支球隊(duì)所得分?jǐn)?shù)的平均值及分散程度(不要求計(jì)算出具體值,得出結(jié)論即可);

(2)根據(jù)球隊(duì)所得分?jǐn)?shù),將球隊(duì)的攻擊能力從低到高分為三個(gè)等級(jí):

球隊(duì)所得分?jǐn)?shù)

低于100分

100分到119分

不低于120分

攻擊能力等級(jí)

較弱

較強(qiáng)

很強(qiáng)

記事件球隊(duì)的攻擊能力等級(jí)高于球隊(duì)的攻擊能力等級(jí)”.假設(shè)兩支球隊(duì)的攻擊能力相互獨(dú)立. 根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人進(jìn)行羽毛球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判,每局比賽結(jié)束時(shí),負(fù)的一方在下一局當(dāng)裁判,假設(shè)每局比賽中,甲勝乙的概率為,甲勝丙、乙勝丙的概率都為,各局比賽的結(jié)果都相互獨(dú)立,第局甲當(dāng)裁判.

1)求第局甲當(dāng)裁判的概率;

2)記前局中乙當(dāng)裁判的次數(shù)為,求的概率分布與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案