【題目】已知函數(shù)為奇函數(shù),(1)求的值;(2)判斷并證明函數(shù)的單調(diào)性;(3)是否存在這樣的實(shí)數(shù),使對(duì)一切恒成立,若存在,試求出取值的集合;若不存在,說(shuō)明理由.
【答案】(1)a=3;(2)減函數(shù);(3).
【解析】試題分析:(1)由可得結(jié)果;(2)利用定義法,任取判斷的符號(hào)即可判斷函數(shù)的單調(diào)性;(3)利用函數(shù)的單調(diào)性和三角函數(shù)的性質(zhì)求恒成立問(wèn)題.
試題解析:(1)因?yàn)?/span>是奇函數(shù),所以,可得a=3.
(2)任取
是上的減函數(shù);
(3) 是上的減函數(shù)
令
同理:由 得:
由 得:
即綜上所得: ,所以存在這樣的k,其范圍為.
【方法點(diǎn)晴】本題主要考查利用函數(shù)的奇偶性、單調(diào)性以及不等式恒成立問(wèn)題,屬于難題.不等式恒成立問(wèn)題常見(jiàn)方法:① 分離參數(shù)恒成立(即可)或恒成立(即可);② 數(shù)形結(jié)合(圖象在 上方即可);③ 討論最值或恒成立;④ 討論參數(shù).本題是利用方法 ① 求得的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某制造廠商10月份生產(chǎn)了一批乒乓球,從中隨機(jī)抽取個(gè)進(jìn)行檢查,測(cè)得每個(gè)球的直徑(單位:),將數(shù)據(jù)進(jìn)行分組,得到如下頻率分布表:
(1)求、、及、的值,并畫(huà)出頻率分布直方圖(結(jié)果保留兩位小數(shù));
(2)已知標(biāo)準(zhǔn)乒乓球的直徑為,直徑誤差不超過(guò)的為五星乒乓球,若這批乒乓球共有個(gè),試估計(jì)其中五星乒乓球的數(shù)目;
(3)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如區(qū)間的中點(diǎn)值是)作為代表,估計(jì)這批乒乓球直徑的平均值和中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),且.曲線(xiàn)在點(diǎn)處的切線(xiàn)的斜率為.
(1)求的值;
(2)若存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)當(dāng)時(shí),求函數(shù)在上的最大值和最小值;
(2)當(dāng)時(shí),是否存在正實(shí)數(shù),當(dāng)(是自然對(duì)數(shù)底數(shù))時(shí),函數(shù)的最小值是3,若存在,求出的值;若不存在,說(shuō)明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新一屆中央領(lǐng)導(dǎo)集體非常重視勤儉節(jié)約,從“光盤(pán)行動(dòng)”到“節(jié)約辦春晚”.到飯店吃飯是吃光盤(pán)子或時(shí)打包帶走,稱(chēng)為“光盤(pán)族”,否則稱(chēng)為“非光盤(pán)族”.政治課上政治老師選派幾位同學(xué)組成研究性小組,從某社區(qū)[25,55]歲的人群中隨機(jī)抽取人進(jìn)行了一次調(diào)查,得到如下統(tǒng)計(jì)表:
組數(shù) | 分組 | 頻數(shù) | 頻率 | 光盤(pán)族占本組比例 |
第1組 | [25,30) | 50 | 0.05 | 30% |
第2組 | [30,35) | 100 | 0.10 | 30% |
第3組 | [35,40) | 150 | 0.15 | 40% |
第4組 | [40,45) | 200 | 0.20 | 50% |
第5組 | [45,50) | a | b | 65% |
第6組 | [50,55) | 200 | 0.20 | 60% |
(1)求的值,并估計(jì)本社區(qū)[25,55)歲的人群中“光盤(pán)族”所占比例;
(2)從年齡段在[35,45)的“光盤(pán)族”中采用分層抽樣方法抽取8人參加節(jié)約糧食宣傳活動(dòng),并從這8人中選取2人作為領(lǐng)隊(duì).求選取的2名領(lǐng)隊(duì)分別來(lái)自[35,40)與[40,45)兩個(gè)年齡段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,公園有一塊邊長(zhǎng)為的等邊的邊角地,現(xiàn)修成草坪,圖中把草坪分成面積相等的兩部分,在上,在上.
(1)設(shè)(),,求用表示的函數(shù)關(guān)系式;
(2)如果是灌溉水管,為節(jié)約成本,希望它最短,的位置應(yīng)在哪里?如果是參觀線(xiàn)路,則希望它最長(zhǎng),的位置又應(yīng)在哪里?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)路上所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學(xué)路上所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為,,,,.
(1)求直方圖中的值;
(2)如果上學(xué)路上所需時(shí)間不少于60分鐘的學(xué)生可申請(qǐng)?jiān)趯W(xué)校住宿,請(qǐng)估計(jì)學(xué)校1000名新生中有多少名學(xué)生可以申請(qǐng)住宿;
(3)現(xiàn)有6名上學(xué)路上時(shí)間小于分鐘的新生,其中2人上學(xué)路上時(shí)間小于分鐘. 從這6人中任選2人,設(shè)這2人中上學(xué)路上時(shí)間小于分鐘人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,側(cè)面是正三角形,且與底面垂直,底面是邊長(zhǎng)為2的菱形, 是的中點(diǎn),過(guò)三點(diǎn)的平面交于, 為的中點(diǎn),求證:
(1)平面;
(2)平面;
(3)平面平面.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com