(本小題滿分10分) 如圖,已知橢圓C,經(jīng)過橢圓的右焦點(diǎn)F且斜率為的直線l交橢圓C于A、B兩點(diǎn),M為線段AB的中點(diǎn),設(shè)O為橢圓的中心,射線OM交橢圓于N點(diǎn).(I)是否存在,使對任意,總有成立?若存在,求出所有的值;
(II)若,求實(shí)數(shù)的取值范圍.

(1)
(2)k≠0
解:(1)橢圓C
直線ABykx-m),                                          
,(10k2+6)x2-20k2mx+10k2m2-15m2=0.  
設(shè)Ax1, y1)、Bx2,y2),則x1x2x1x2   
xm             
若存在,使ON的中點(diǎn),∴

即N點(diǎn)坐標(biāo)為.                           
由N點(diǎn)在橢圓上,則    
即5k4-2k2-3=0.∴(舍).
故存在,使.··········5分                             
(2)x1x2k2x1-m)(x2m
=(1+k2x1x2k2m(x1x2)+k2m2
=(1+k2)·     
    
k2-15≤-20k2-12,k≠0.··········10分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)斜率為的直線交橢圓兩點(diǎn),點(diǎn)為弦的中點(diǎn),直線的斜率為(其中為坐標(biāo)原點(diǎn),假設(shè)都存在).
(1)求×的值.
(2)把上述橢圓一般化為>0),其它條件不變,試猜想關(guān)系(不需要證明).請你給出在雙曲線>0,>0)中相類似的結(jié)論,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)橢圓C:的兩個(gè)焦點(diǎn)分別為 ,是橢圓上一點(diǎn),且滿足
(1)求離心率e的取值范圍;
(2)當(dāng)離心率e取得最小值時(shí),點(diǎn)N( 0 , 3 )到橢圓上的點(diǎn)的最遠(yuǎn)距離為。
(i)求此時(shí)橢圓C的方程;
(ii)設(shè)斜率為的直線l與橢圓C相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),問A、B兩點(diǎn)能否關(guān)于過點(diǎn)P(0,)、Q的直線對稱?若能,求出的取值范圍;若不能,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果方程表示焦點(diǎn)在軸上的橢圓,則的取值范圍是                 .        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的長軸長是短軸長的兩倍,那么這個(gè)橢圓的離心率為     (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線與曲線只有一個(gè)公共點(diǎn),則m的取值范圍是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓的離心率,則的值為                  (     )
A.B.C.D.3或

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)已知橢圓的離心率為,過的直線與原點(diǎn)的距離為
(1)求橢圓的方程;
(2)已知定點(diǎn),直線與橢圓交于不同兩點(diǎn)C,D,試問:對任意的,是否都存在實(shí)數(shù),使得以線段CD為直徑的圓過點(diǎn)E?證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果橢圓的兩個(gè)頂點(diǎn)為(3,0),(0,-4),則其標(biāo)準(zhǔn)方程為(   )
(A)   (B)     (C)      (D)

查看答案和解析>>

同步練習(xí)冊答案