【題目】如圖,在三棱錐P﹣ABC中,PA=PC=5,PB=4,AB=BC=2 ,∠ACB=30°.
(1)求證:AC⊥PB;
(2)求三棱錐P﹣ABC的體積.
【答案】
(1)證明:取AC的中點(diǎn)D,連接PD、BD.
∵AB=BC,PA=AC,D為AC的中點(diǎn),
∴PD⊥AC,BD⊥AC,
又BD平面PBD,PD平面PBD,BD∩PD=D,
∴AC⊥平面PBD.
∵PB平面PBD,
∴AC⊥PB.
(2)解:AB=BC=2 ,∠ACB=30°.
∴BD= BC= ,AD=CD= AC=3.
∴PD= =4,又PB=4,
∴△PBD是等腰三角形,作PB⊥BD于O,則O為BD的中點(diǎn),
∴PO= = .
∴S△PBD= = = .
∴VP﹣ABC=VA﹣PBD+VC﹣PBD= S△PBD(AD+CD)= = .
【解析】(1)取AC的中點(diǎn)D,連接PD、BD,利用三線合一得出PD⊥AC,BD⊥AC,于是AC⊥平面PBD,從而得出AC⊥PB;(2)計(jì)算AC,PD從而得出PB=PD,求出△PBD的面積,則VP﹣ABC= S△PBDAC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,若關(guān)于的方程恰好有 4 個(gè)不相等的實(shí)數(shù)解,則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)A(3,2)、B(1,6),且圓心在直線y=2x上.
(1)求圓C的方程.
(2)若直線l經(jīng)過(guò)點(diǎn)P(﹣1,3)與圓C相切,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】城市公交車的數(shù)量太多容易造成資源的浪費(fèi),太少又難以滿足乘客的需求,為此,某市公交公司在某站臺(tái)的60名候車的乘客中隨機(jī)抽取15人,將他們的候車時(shí)間作為樣本分成5組,如下表所示:
組別 | 一 | 二 | 三 | 四 | 五 |
候車時(shí)間(分鐘) | |||||
人數(shù) | 2 | 6 | 4 | 2 | 1 |
(1)估計(jì)這15名乘客的平均候車時(shí)間;
(2)估計(jì)這60 名乘客中候車時(shí)間少于10 分鐘的人數(shù);
(3)若從上表第三、四組的6人中選2人作進(jìn)一步的問(wèn)卷調(diào)查,求抽到的2人恰好來(lái)自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= .(x>0)
(1)函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(2)若當(dāng)x>0時(shí),f(x)> 恒成立,求正整數(shù)k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)與在處有相同的切線,求的值;
(2)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍.
(3)若,恒有成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C:x2+y2+4x﹣2y+m=0與直線x﹣ y+ ﹣2=0相切.
(1)求圓C的方程;
(2)若圓C上有兩點(diǎn)M,N關(guān)于直線x+2y=0對(duì)稱,且|MN|=2 ,求直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們稱滿足: ()的數(shù)列為“級(jí)夢(mèng)數(shù)列”.
(1)若是“級(jí)夢(mèng)數(shù)列”且.求: 和的值;
(2)若是“級(jí)夢(mèng)數(shù)列”且滿足, ,求的最小值;
(3)若是“0級(jí)夢(mèng)數(shù)列”且,設(shè)數(shù)列的前項(xiàng)和為.證明: ().
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查某高中學(xué)生每天的睡眠時(shí)間,現(xiàn)隨機(jī)對(duì)20名男生和20名女生進(jìn)行問(wèn)卷調(diào)查,結(jié)果如下:
女生:
睡眠時(shí)間(小時(shí)) | [4,5) | [5,6) | [6,7) | [7,8) | [8,9] |
人數(shù) | 2 | 4 | 8 | 4 | 2 |
男生:
睡眠時(shí)間(小時(shí)) | [4,5) | [5,6) | [6,7) | [7,8) | [8,9] |
人數(shù) | 1 | 5 | 6 | 5 | 3 |
(1)現(xiàn)把睡眠時(shí)間不足5小時(shí)的定義為“嚴(yán)重睡眠不足”,從睡眠時(shí)間不足6小時(shí)的女生中隨機(jī)抽取2人,求此2人中恰有一人為“嚴(yán)重睡眠不足”的概率;
(2)完成下面2×2列聯(lián)表,并回答是否有90%的把握認(rèn)為“睡眠時(shí)間與性別有關(guān)”?
睡眠時(shí)間少于7小時(shí) | 睡眠時(shí)間不少于7小時(shí) | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
( ,其中n=a+b+c+d)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com