【題目】一個(gè)不透明的箱子中裝有大小形狀相同的5個(gè)小球,其中2個(gè)白球標(biāo)號(hào)分別為,,3個(gè)紅球標(biāo)號(hào)分別為,,,現(xiàn)從箱子中隨機(jī)地一次取出兩個(gè)球.
(1)求取出的兩個(gè)球都是白球的概率;
(2)求取出的兩個(gè)球至少有一個(gè)是白球的概率.
【答案】(1)
(2)
【解析】
(1)用列舉法能求出從中摸兩個(gè)球,即可求出取出的兩個(gè)球都是白球的概率.
(2)由(1)列出至少有一個(gè)是白球的基本事件數(shù),再根據(jù)古典概型的概率公式計(jì)算可得.
解:(1)從裝有5個(gè)球的箱子中任意取出兩個(gè)小球包含的基本事件有
,,,,,,,,,,共10種情況.
記“取出的兩個(gè)球都是白球”為事件D.
易知事件D包含的基本事件有,共1種情況.
∴.
(2)記“取出的兩個(gè)球至少有一個(gè)是白球”為事件E.易知事件E包含的基本事件有
,,,,,,,共7種情況.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所.現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校,對(duì)學(xué)生進(jìn)行視力檢查.
(Ⅰ) 求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;
(Ⅱ) 若從抽取的6所學(xué)校中隨即抽取2所學(xué)校作進(jìn)一步數(shù)據(jù)
①列出所有可能抽取的結(jié)果;
②求抽取的2所學(xué)校沒(méi)有大學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了檢測(cè)某種零件的一條生產(chǎn)線(xiàn)的生產(chǎn)過(guò)程,從生產(chǎn)線(xiàn)上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間()之外,則認(rèn)為該零件屬“不合格”的零件,其中,分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得:(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(1)若一個(gè)零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前3組中抽出6個(gè)零件,標(biāo)上記號(hào),并從這6個(gè)零件中再抽取2個(gè),求再次抽取的2個(gè)零件中恰有1個(gè)尺寸不超過(guò)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),把函數(shù)的圖象向右平移個(gè)單位,再把圖象上各點(diǎn)的橫坐標(biāo)縮小到原來(lái)的一半,縱坐標(biāo)不變,得到函數(shù)的圖象,當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)根,則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知圓柱的底面圓的半徑,圓柱的表面積為;點(diǎn)在底面圓上,且直線(xiàn)與下底面所成的角的大小為,
(1)求點(diǎn)到平面的距離;
(2)求二面角的大小(結(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為中心,以坐標(biāo)軸為對(duì)稱(chēng)軸的橢圓C經(jīng)過(guò)點(diǎn)M(2,1),N(,-).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)經(jīng)過(guò)點(diǎn)M作傾斜角互補(bǔ)的兩條直線(xiàn),分別與橢圓C相交于異于M點(diǎn)的A,B兩點(diǎn),求直線(xiàn)AB的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,底面是且邊長(zhǎng)為的菱形,側(cè)面為正三角形,其所在平面垂直于底面,若為的中點(diǎn),為的中點(diǎn).
(1)求證:平面;
(2)求證:;
(3)在棱上是否存在一點(diǎn),使平面平面,若存在,確定點(diǎn)的位置;若不存在,說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面ABCD為矩形,O,E分別為AD,PB的中點(diǎn),平面平面ABCD,,.
(1)求證:平面PCD;
(2)求證:平面PCD;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】畫(huà)糖是一種以糖為材料在石板上進(jìn)行造型的民間藝術(shù),常見(jiàn)于公園與旅游景點(diǎn).某師傅制作了一種新造型糖畫(huà),為了合理定價(jià),先進(jìn)行試銷(xiāo)售,其單價(jià)x(元)與銷(xiāo)量y(個(gè))相關(guān)數(shù)據(jù)如表:
單價(jià)x(元) | 8.5 | 9 | 9.5 | 10 | 10.5 |
銷(xiāo)量y(個(gè)) | 12 | 11 | 9 | 7 | 6 |
(1)已知銷(xiāo)量y與單價(jià)x具有線(xiàn)性相關(guān)關(guān)系,求y關(guān)于x的線(xiàn)性回歸方程;
(2)若該新造型糖畫(huà)每個(gè)的成本為5.7元,要使得進(jìn)入售賣(mài)時(shí)利潤(rùn)最大,請(qǐng)利用所求出的線(xiàn)性回歸方程確定單價(jià)應(yīng)該定為多少元?(結(jié)果保留到整數(shù))
參考公式:線(xiàn)性回歸方程yx中斜率和截距最小二乘法估計(jì)計(jì)算公式:.參考數(shù)據(jù):.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com