【題目】設(shè)集合A是實(shí)數(shù)集R的子集,如果x0∈R滿足:對(duì)任意a>0,都存在x∈A,使得0<|x﹣x0|<a,則稱x0為集合A的聚點(diǎn),給出下列集合(其中e為自然對(duì)數(shù)的底):①{1+ |x>0};②{2x|x∈N};③{x2+x+2|x∈R};④{lnx|x>0且x≠e},其中,以1為聚點(diǎn)的集合有(
A.①②
B.②③
C.③④
D.①④

【答案】D
【解析】解:①{1+ |x>0}中的元素構(gòu)成以1為極限的數(shù)列,故對(duì)任意a>0,都存在x∈A,使得0<|x﹣1|<a成立,符合題意;
②{2x|x∈N},y=2x是單調(diào)增函數(shù),對(duì)任意a>0,不存在x∈A,使得0<|x﹣1|<a,不符合題意;
③{x2+x+2|x∈R},∵x2+x+2≥ ,對(duì)任意a>0,不存在x∈A,使得0<|x﹣1|<a,不符合題意;
④{lnx|x>0且x≠e},lnx≠1,滿足:對(duì)任意a>0,都存在x∈A,使得0<|x﹣1|<a,故此集合以1為聚點(diǎn)符合題意,
故選:D.
【考點(diǎn)精析】通過靈活運(yùn)用子集與真子集,掌握任何一個(gè)集合是它本身的子集;n個(gè)元素的子集有2n個(gè),n個(gè)元素的真子集有2n -1個(gè),n個(gè)元素的非空真子集有2n-2個(gè)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,射線y=x(x≥0)和y=0(x≥0)上分別依次有點(diǎn)A1、A2 , …,An , …,和點(diǎn)B1 , B2 , …,Bn…,其中 , , .且 , (n=2,3,4…).

(1)用n表示|OAn|及點(diǎn)An的坐標(biāo);
(2)用n表示|BnBn+1|及點(diǎn)Bn的坐標(biāo);
(3)寫出四邊形AnAn+1Bn+1Bn的面積關(guān)于n的表達(dá)式S(n),并求S(n)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=2,Sn-4Sn-1-2=0(n≥2,n∈Z).

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)令bn=log2an,Tn{bn}的前n項(xiàng)和,求證 <2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩隊(duì)參加聽歌猜歌名游戲,每隊(duì)3人.隨機(jī)播放一首歌曲,參賽者開始搶答,每人只有一次搶答機(jī)會(huì)(每人搶答機(jī)會(huì)均等),答對(duì)者為本隊(duì)贏得一分,答錯(cuò)得零分.假設(shè)甲隊(duì)中每人答對(duì)的概率均為 ,乙隊(duì)中3人答對(duì)的概率分別為 , ,且各人回答正確與否相互之間沒有影響.
(Ⅰ)若比賽前隨機(jī)從兩隊(duì)的6個(gè)選手中抽取兩名選手進(jìn)行示范,求抽到的兩名選手在同一個(gè)隊(duì)的概率;
(Ⅱ)用ξ表示甲隊(duì)的總得分,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望;
(Ⅲ)求兩隊(duì)得分之和大于4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log4(ax2﹣4x+a)(a∈R),若f(x)的值域?yàn)镽,則實(shí)數(shù)a的取值范圍是(
A.[0,2]
B.(2,+∞)
C.(0,2]
D.(﹣2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足 為常數(shù)

(1)求函數(shù)f(x)的表達(dá)式;

(2)如果f(x)為偶函數(shù),求a的值;

(3)當(dāng)f(x)為偶函數(shù)時(shí),若方程f(x)=m有兩個(gè)實(shí)數(shù)根x1,x2;其中x1<0,0<x2<1;求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對(duì)一切正實(shí)數(shù)x,t,不等式 ﹣cos2x≥asinx﹣ 都成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)對(duì)一切實(shí)數(shù)x,y均有f(x+y)﹣f(y)=(x+2y+2)x成立,且f(2)=12.
(1)求f(0)的值;
(2)在(1,4)上存在x0∈R,使得f(x0)﹣8=ax0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為等差數(shù)列,前n項(xiàng)和為 是首項(xiàng)為2的等比數(shù)列,且公比大于0, ,, .

(Ⅰ)求的通項(xiàng)公式;

(Ⅱ)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案