在拋物線上,求一點(diǎn)P,使P到直線的距離最短,并求距離的最小值.

 

【答案】

即為最小值.

【解析】

試題分析:解:設(shè)與平行并且與相切的直線為,切點(diǎn)為,

,消去,

,得

所以兩平行線間的距離即為所求的最小值.

代入,即得即為最小值.

即得點(diǎn)

考點(diǎn):本題主要考查拋物線的標(biāo)準(zhǔn)方程及幾何性質(zhì),直線與拋物線的位置關(guān)系。

點(diǎn)評(píng):基礎(chǔ)題型,解答此類問題,一般兩種思路,一是建立距離的函數(shù)表達(dá)式,二是數(shù)形結(jié)合,本解法如此。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:044

在拋物線上,求一點(diǎn)P(    ,   )使P到焦點(diǎn)F與到點(diǎn)A(32)的距離之和為最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線有光學(xué)性質(zhì): 由其焦點(diǎn)射出的光線經(jīng)拋物線折射后,沿平行于拋物線對稱軸的方向射出,今有拋物線y2=2px(p>0)  一光源在點(diǎn)M(,4)處,由其發(fā)出的光線沿平行于拋物線的軸的方向射向拋物線上的點(diǎn)P,折射后又射向拋物線上的點(diǎn)Q,再折射后,又沿平行于拋物線的軸的方向射出,途中遇到直線l: 2x-4y-17=0上的點(diǎn)N,再折射后又射回點(diǎn)M(如下圖所示)

 (1)設(shè)P、Q兩點(diǎn)坐標(biāo)分別為(x1,y1)、(x2,y2),證明:y1·y2=-p2;

(2)求拋物線的方程;

(3)試判斷在拋物線上是否存在一點(diǎn),使該點(diǎn)與點(diǎn)M關(guān)于PN所在的直線對稱?若存在,請求出此點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線有光學(xué)性質(zhì):由其焦點(diǎn)射出的光線經(jīng)拋物線折射后,沿平行于拋物線對稱軸的方向射出,今有拋物線y2=2px(p>0).一光源在點(diǎn)M(,4)處,由其發(fā)出的光線沿平行于拋物線的軸的方向射向拋物線上的點(diǎn)P,折射后又射向拋物線上的點(diǎn)Q,再折射后,又沿平行于拋物線的軸的方向射出,途中遇到直線l:2x-4y-17=0上的點(diǎn)N,再折射后又射回點(diǎn)M(如圖所示).

(1)設(shè)P、Q兩點(diǎn)坐標(biāo)分別為(x1,y1)、(x2,y2),證明y1·y2=-p2;

(2)求拋物線的方程;

(3)試判斷在拋物線上是否存在一點(diǎn),使該點(diǎn)與點(diǎn)M關(guān)于PN所在的直線對稱?若存在,請求出此點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線有光學(xué)性質(zhì):由其焦點(diǎn)射出的光線經(jīng)拋物線折射后,沿平行于拋物線對稱軸的方向射出.今有拋物線y2=2px(p>0),一光源在點(diǎn)M(,4)處,由其發(fā)出的光線沿平行于拋物線對稱軸的方向射向拋物線上的點(diǎn)P,折射后又射向拋物線上的點(diǎn)Q,再折射后,又沿平行于拋物線對稱軸的方向射出,途中遇到直線l:2x-4y-17=0上的點(diǎn)N,再折射后又射回點(diǎn)M(如圖所示).

(1)設(shè)P、Q兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),證明:y1y2=-p2;

(2)求拋物線的方程;

(3)試判斷在拋物線上是否存在一點(diǎn),使該點(diǎn)與點(diǎn)M關(guān)于PN所在的直線對稱?若存在,請求出此點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案