【題目】將函數(shù)f(x)= sin2x﹣ cos2x+1的圖象向左平移 個單位,再向下平移1個單位,得到函數(shù)y=g(x)的圖象,則下列關予函數(shù)y=g(x)的說法錯誤的是( )
A.函數(shù)y=g(x)的最小正周期為π
B.函數(shù)y=g(x)的圖象的一條對稱軸為直線x=
C. g(x)dx=
D.函數(shù)y=g(x)在區(qū)間[ , ]上單調(diào)遞減
【答案】D
【解析】解:把f(x)= sin2x﹣ cos2x+1=2sin(2x﹣ )+1的圖象向左平移 個單位, 得到函數(shù)y=2sin[2(x+ )﹣ ]+1=2sin(2x+ )+1的圖象,
再向下平移1個單位,得到函數(shù)y=g(x)=2sin(2x+ )的圖象,
對于A,由于T= ,故正確;
對于B,由2x+ =kπ+ ,k∈Z,解得:x= + ,k∈Z,可得:當k=0時,y=g(x)的圖象的一條對稱軸為直線x= ,故正確;
對于C, g(x)dx= 2sin(2x+ )dx=﹣cos(2x+ )| =﹣(cos ﹣cos )= ,故正確;
對于D,由2kπ+ ≤2x+ ≤2kπ+ ,k∈Z,解得:kπ+ ≤x≤kπ+ ,k∈Z,可得函數(shù)y=g(x)在區(qū)間[ , ]上單調(diào)遞減,故錯誤.
故選:D.
利用兩角差的正弦函數(shù)公式、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得g(x),利用正弦函數(shù)的圖象和性質(zhì)逐一分析各個選項即可得解.
科目:高中數(shù)學 來源: 題型:
【題目】“龜兔賽跑”講述了這樣的故事:領先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當它醒來時,發(fā)現(xiàn)烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達了終點.用,分別表示烏龜和兔子所行的路程,為時間,則與故事情節(jié)相吻合的是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中,橢圓C的參數(shù)方程為 (θ為參數(shù)).
(1)以原點為極點,x軸的正半軸為極軸建立極坐標系,求橢圓C的極坐標方程;
(2)設M(x,y)為橢圓C上任意一點,求x+2y的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】黨的十九大報告指出,建設生態(tài)文明是中華民族永續(xù)發(fā)展的千年大計.而清潔能源的廣泛使用將為生態(tài)文明建設提供更有力的支撐.沼氣作為取之不盡、用之不竭的生物清潔能源,在保護綠水青山方面具有獨特功效.通過辦沼氣帶來的農(nóng)村“廁所革命”,對改善農(nóng)村人居環(huán)境等方面,起到立竿見影的效果.為了積極響應國家推行的“廁所革命”,某農(nóng)戶準備建造一個深為2米,容積為32立方米的長方體沼氣池,如果池底每平方米的造價為150元,池壁每平方米的造價為120元,沼氣池蓋子的造價為3000元,問怎樣設計沼氣池能使總造價最低?最低總造價是多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是上的奇函數(shù),且當時,,.
(1)若,求的解析式;
(2)若,不等式恒成立,求實數(shù)的取值范圍;
(3)若的值域為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】是定義在R上的函數(shù),對∈R都有,且當>0時,<0,且=1.
(1)求的值;
(2)求證:為奇函數(shù);
(3)求在[-2,4]上的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】計算機在數(shù)據(jù)處理時使用的是二進制,例如十進制的1、2、3、4在二進制分別表示為1、10、11、100.下面是某同學設計的將二進制數(shù)11111化為十進制數(shù)的一個流程圖,則判斷框內(nèi)應填入的條件是( )
A.i>4
B.i≤4
C.i>5
D.i≤5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若關于x的不等式的解集為 , 且函數(shù)在區(qū)間上不是單調(diào)函數(shù),則實數(shù)m的取值范圍為 ( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com