【題目】在△ABC中,a,b,c分別為角A,B,C的對(duì)邊.若acosB=3,bcosA=l,且A﹣B=
(1)求邊c的長(zhǎng);
(2)求角B的大小.
【答案】
(1)解:∵acosB=3,bcosA=l,∴a× =3,b× =1,
化為:a2+c2﹣b2=6c,b2+c2﹣a2=2c.
相加可得:2c2=8c,解得c=4
(2)解:由(1)可得:a2﹣b2=8.
由正弦定理可得: ,
又A﹣B= ,∴A=B+ ,C=π﹣(A+B)= ,可得sinC=sin .
∴a= ,b= .
∴ ﹣16sin2B= ,
∴1﹣ ﹣(1﹣cos2B)= ,即cos2B﹣ = ,
∴﹣2 ═ ,
∴ =0或 =1,B∈ .
解得:B=
【解析】(1)由acosB=3,bcosA=l,利用余弦定理化為:a2+c2﹣b2=6c,b2+c2﹣a2=2c.相加即可得出c.(2)由(1)可得:a2﹣b2=8.由正弦定理可得: ,又A﹣B= ,可得A=B+ ,C= ,可得sinC=sin .代入可得 ﹣16sin2B= ,化簡(jiǎn)即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的首項(xiàng),公差.且、、分別是等比數(shù)列的第2、3、4項(xiàng).
(1)求數(shù)列與的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足,求的值(結(jié)果保留指數(shù)形式).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(改編)已知正數(shù)數(shù)列的前項(xiàng)和為,且滿足;在數(shù)列中,
(1)求數(shù)列和的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為. 若對(duì)任意,存在實(shí)數(shù),使恒成立,求的最小值;
(3)記數(shù)列的前項(xiàng)和為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)證明當(dāng)時(shí),關(guān)于的不等式恒成立;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
(1)證明函數(shù)f ( x )的圖象關(guān)于軸對(duì)稱;
(2)判斷在上的單調(diào)性,并用定義加以證明;
(3)當(dāng)x∈[1,2]時(shí)函數(shù)f (x )的最大值為,求此時(shí)a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是直角梯形,,,,,又,,,直線與直線所成的角為.
(1)求證:平面平面;
(2)(文科)求三棱錐的體積.
(理科)求二面角平面角正切值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐中,和是邊長(zhǎng)為的等邊三角形,,分別是的中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面⊥平面;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線
(1)若直線與圓相交于兩點(diǎn),弦長(zhǎng)等于,求的值;
(2)已知點(diǎn),點(diǎn)為圓心,若在直線上存在定點(diǎn)(異于點(diǎn)),滿足:對(duì)于圓上任一點(diǎn),都有為一常數(shù),試求所有滿足條件的點(diǎn)的坐標(biāo)及改常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng),時(shí),求滿足的的值;
(2)若函數(shù)是定義在上的奇函數(shù).
①存在,使得不等式有解,求實(shí)數(shù)的取值范圍;
②若函數(shù)滿足,若對(duì)任意且,不等式恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com