精英家教網 > 高中數學 > 題目詳情

(本小題滿分14分)已知橢圓的中心在坐標原點,焦點在軸上,橢圓上的點到

   兩個焦點的距離之和為,離心率.

(Ⅰ)求橢圓的方程;

  (Ⅱ)設橢圓的左、右焦點分別為、,過點的直線與該橢圓交于點、,

、為鄰邊作平行四邊形,求該平行四邊形對角線的長度

的最大值.

 

【答案】

20.解:(Ⅰ)設橢圓方程為,由已知得,

    ,從而橢圓方程為.    ----------------------------  4´

(Ⅱ)由上知.             -- ---------------------------------------------- 5´ 

 ① 若直線的斜率不存在,則直線的方程為,將代入橢圓得.

   由對稱性,不妨設,則,

   從而  ------------------------------------------------------------------------- 7´

② 若直線的斜率存在,設斜率為,則直線的方程為.

 設,由 消去得,

 , -       - ---------------------------------------- 9´

,  ------------------------ 10´

又由得,

.

從而-  -------------------------------- -------------------------------------- 13´

綜上知,平行四邊形對角線的長度的最大值是4. -  ---------------------------- 14´

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數f(x)
的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數的圖像上,其中=.
(1)證明:數列}是等比數列;
(2)設,求及數列{}的通項公式;
(3)記,求數列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現,第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案