給定函數(shù):①y=
x
,②y=log
1
2
(x+1)
,③y=2x-1,④y=-x|x-2|,其中在區(qū)間(0,1)上是單調(diào)減函數(shù)的序號(hào)是
②④
②④
.(填上所有你認(rèn)為正確的結(jié)論的序號(hào))
分析:y=
x
在(0,1)上是增函數(shù);②y=log
1
2
(x+1)
在(0,1)上是減函數(shù);③y=2x-1在(0,1)上是增函數(shù);④y=-x|x-2|在(0,1)上是減函數(shù).
解答:解::①y=
x
在(0,1)上是增函數(shù);
y=log
1
2
(x+1)
在(0,1)上是減函數(shù);
③y=2x-1在(0,1)上是增函數(shù);
④y=-x|x-2|在(0,1)上是減函數(shù).
故答案為:②④
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性的判斷,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給定函數(shù):①y=
1
x
(x≠0);②y=x2+1;③y=2x;④y=log2x;⑤y=log2(x+
x2+1
).
在這五個(gè)函數(shù)中,奇函數(shù)是
 
,偶函數(shù)是
 
,非奇非偶函數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定函數(shù)f(x)=x2+ax+b,若對(duì)于任意x,y∈R,均有pf(x)+qf(y)≥f(px+qy),其中實(shí)數(shù)p,q滿足p+q=1,那么p的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)在R上有定義,對(duì)于給定的正數(shù)M,定義函數(shù)fM(x)=
f(x),f(x)≥M
M,f(x)<M
,若給定函數(shù)f(x)=ex-1,當(dāng)M=1時(shí),fM(x)的單調(diào)遞增區(qū)間是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
p
=(a-3,x),
q
=(x+a,x),f(x)=
p
q
,且m,n是方程f(x)=0的兩個(gè)實(shí)根,
(1)設(shè)g(a)=m3+n3+a3,求g(a)的最小值;
(2)若不等式lnx-
b
x
x2
在x∈[1,+∞)上恒成立,求實(shí)數(shù)b的取值范圍;
(3)對(duì)于(1)中的函數(shù)y=g(a),給定函數(shù)h(x)=c(xlnx-x3),(c<0),若對(duì)任意的x0∈[2,3],總存在x1∈[1,2],使得g(x0)=h(x1),求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案