分析 (1)由題意可知:橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)焦點(diǎn)在x軸,2a=2$\sqrt{2}$,則a=$\sqrt{2}$,橢圓的離心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,c=1,由b2=a2-c2=1,則橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)由PF2⊥F1P,P點(diǎn)坐標(biāo)為(1,±$\frac{\sqrt{2}}{2}$),△F1F2P的面積S=$\frac{1}{2}$丨F1F2丨•丨y丨=$\frac{1}{2}$•2•$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{2}$;
(3)設(shè)D(x1,y1),E(-x1,-y1),由直線AD的斜率k1=$\frac{{y-y}_{1}}{x-{x}_{1}}$=$\frac{1-{y}_{1}}{0-{x}_{1}}$,直線AE的斜率k2=$\frac{y+{y}_{1}}{x+{x}_{1}}$=$\frac{1+{y}_{1}}{{x}_{1}}$,y12=1-$\frac{{x}_{1}^{2}}{2}$,k1•k2=$\frac{1-{y}_{1}}{0-{x}_{1}}$•$\frac{1+{y}_{1}}{{x}_{1}}$=$\frac{1-{y}_{1}^{2}}{{x}_{1}^{2}}$=-$\frac{1}{2}$,即可求得k1k2的值.
解答 解:(1)由題意可知:橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)焦點(diǎn)在x軸,2a=2$\sqrt{2}$,則a=$\sqrt{2}$,
橢圓的離心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,
∴c=1,
由b2=a2-c2=1,
∴橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)由∠F1F2P=90°,
∴PF2⊥F1P,
則當(dāng)x=c=1時(shí),解得:y=±$\frac{\sqrt{2}}{2}$,
∴P點(diǎn)坐標(biāo)為(1,±$\frac{\sqrt{2}}{2}$),
由三角形的面積公式可知:△F1F2P的面積S=$\frac{1}{2}$丨F1F2丨•丨y丨=$\frac{1}{2}$•2•$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{2}$,
∴△F1F2P的面積$\frac{\sqrt{2}}{2}$;
(3)點(diǎn)A(0,1),設(shè)D(x1,y1),E(-x1,-y1),
則y12=1-$\frac{{x}_{1}^{2}}{2}$,
由直線AD的斜率k1=$\frac{{y-y}_{1}}{x-{x}_{1}}$=$\frac{1-{y}_{1}}{0-{x}_{1}}$,直線AE的斜率k2=$\frac{y+{y}_{1}}{x+{x}_{1}}$=$\frac{1+{y}_{1}}{{x}_{1}}$,
∴k1•k2=$\frac{1-{y}_{1}}{0-{x}_{1}}$•$\frac{1+{y}_{1}}{{x}_{1}}$=-$\frac{1-{y}_{1}^{2}}{{x}_{1}^{2}}$=-$\frac{1}{2}$,
k1k2的值-$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,考查焦點(diǎn)三角形的面積公式,考查通徑的求法,直線的斜率公式,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | $4-2\sqrt{5}$ | D. | $2\sqrt{5}+2$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com