【題目】函數(shù)f(x)=Asin(ωx+φ)滿足:f( +x)=﹣f( ﹣x),且f( +x)=f( ﹣x),則ω的一個(gè)可能取值是(
A.2
B.3
C.4
D.5

【答案】B
【解析】解:函數(shù)f(x)=Asin(ωx+φ)滿足:f( +x)=﹣f( ﹣x), 所以函數(shù)f(x)的圖象關(guān)于( ,0)對(duì)稱,
又f( +x)=f( ﹣x),
所以函數(shù)f(x)的圖象關(guān)于x= 對(duì)稱;
所以 = = ,k為正整數(shù),
所以T= ,
=
解得ω=3(2k﹣1),k為正整數(shù);
當(dāng)k=1時(shí),ω=3,
所以ω的一個(gè)可能取值是3.
故選:B.
根據(jù)題意,得出函數(shù)f(x)的圖象關(guān)于( ,0)對(duì)稱,也關(guān)于x= 對(duì)稱;
由此求出函數(shù)的周期T的可能取值,從而得出ω的可能取值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一輛賽車在一個(gè)周長為的封閉跑道上行駛,跑道由幾段直道和彎道組成,圖反映了賽車在“計(jì)時(shí)賽”整個(gè)第二圈的行駛速度與行駛路程之間的關(guān)系.

圖1

圖2

根據(jù)圖有以下四個(gè)說法:

在這第二圈的之間,賽車速度逐漸增加;

在整個(gè)跑道中,最長的直線路程不超過;

大約在這第二圈的之間,賽車開始了那段最長直線路程的行駛;

在圖的四條曲線(注:為初始記錄數(shù)據(jù)位置)中,曲線最能符合賽車的運(yùn)動(dòng)軌跡.

其中,所有正確說法的序號(hào)是(

A. ①②③ B. ②③ C. ①④ D. ③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]已知函數(shù)f(x)=|2x﹣a|+a.
(1)當(dāng)a=2時(shí),求不等式f(x)≤6的解集;
(2)設(shè)函數(shù)g(x)=|2x﹣1|,當(dāng)x∈R時(shí),f(x)+g(x)≥3,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)的動(dòng)直線與拋物線 相交于, 兩點(diǎn).當(dāng)直線的斜率是時(shí), .

(1)求拋物線的方程;

(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn),當(dāng)圓內(nèi)接多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點(diǎn)后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術(shù)設(shè)計(jì)的程序框圖,則輸出的n值為( ) 參考數(shù)據(jù): ,sin15°≈0.2588,sin7.5°≈0.1305.

A.12
B.24
C.48
D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=cos(2x)+sin2x.

(1)求函數(shù)f(x)的最小正周期;

(2)求函數(shù)f(x)的最大值,并寫出f(x)取最大值時(shí)x的取值;

(3)設(shè)A,B,CABC的三個(gè)內(nèi)角,若cosB,f ()=-,且C為銳角,求sinA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),角的終邊經(jīng)過點(diǎn).若的圖象上任意兩點(diǎn),且當(dāng)時(shí),的最小值為.

(1) 的值;

(2)求函數(shù)上的單調(diào)遞減區(qū)間;

(3)當(dāng)時(shí),不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體ABCD﹣A1B1C1D1中,點(diǎn)M在棱BB1上,兩條直線MA,MC與平面ABCD所成角均為θ,AC與BD交于點(diǎn)O.
(1)求證:AC⊥OM;
(2)當(dāng)M為BB1的中點(diǎn),且θ= 時(shí),求二面角A﹣D1M﹣B1的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案