【題目】已知橢圓C: 的左右焦點(diǎn)與其短軸的一個端點(diǎn)是正三角形的三個頂點(diǎn),點(diǎn)D 在橢圓C上,直線l:y=kx+m與橢圓C相交于A、P兩點(diǎn),與x軸、y軸分別相交于點(diǎn)N和M,且PM=MN,點(diǎn)Q是點(diǎn)P關(guān)于x軸的對稱點(diǎn),QM的延長線交橢圓于點(diǎn)B,過點(diǎn)A、B分別作x軸的垂涎,垂足分別為A1、B1
(1)求橢圓C的方程;
(2)是否存在直線l,使得點(diǎn)N平分線段A1B1?若存在,求求出直線l的方程,若不存在,請說明理由.
【答案】
(1)
解:∵橢圓C: 的左右焦點(diǎn)與其短軸的一個端點(diǎn)是正三角形的三個頂點(diǎn),點(diǎn)D 在橢圓C上,
∴由題意得 ,解得a2=4,b2=3,
∴橢圓C的方程為
(2)
解:假設(shè)存在這樣的直線l:y=kx+m,∴M(0,m),N(﹣ ,0),
∵PM=MN,∴P( ,2m),Q( ),
∴直線QM的方程為y=﹣3kx+m,
設(shè)A(x1,y1),由 ,得(3+4k2)x2+8kmx+4(m2﹣3)=0,
∴ ,∴ ,
設(shè)B(x2,y2),由 ,得(3+36k2)x2﹣24kmx+4(m2﹣3)=0,
∴x2+ = ,∴x2=﹣ ,
∵點(diǎn)N平分線段A1B1,∴ ,
∴﹣ =﹣ ,∴k= ,
∴P(±2m,2m),∴ ,解得m= ,
∵|m|= <b= ,∴△>0,符合題意,
∴直線l的方程為y=
【解析】(1)由橢圓的左右焦點(diǎn)與其短軸的一個端點(diǎn)是正三角形的三個頂點(diǎn),點(diǎn)D 在橢圓C上,列出方程組,求出a,b,由此能求出橢圓C的方程.(2)假設(shè)存在這樣的直線l:y=kx+m,則直線QM的方程為y=﹣3kx+m,由 ,得(3+4k2)x2+8kmx+4(m2﹣3)=0,由 ,得(3+36k2)x2﹣24kmx+4(m2﹣3)=0,由此利用根的判別式、韋達(dá)定理、中點(diǎn)坐標(biāo)公式,結(jié)合已知條件,能求出直線l的方程.
【考點(diǎn)精析】關(guān)于本題考查的橢圓的標(biāo)準(zhǔn)方程,需要了解橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= + .
(1)求f(x)≥f(4)的解集;
(2)設(shè)函數(shù)g(x)=k(x﹣3),k∈R,若f(x)>g(x)對任意的x∈R都成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位,已知直線l的參數(shù)方程為 (t為參數(shù),0<φ<π),曲線C的極坐標(biāo)方程為ρcos2θ=8sinθ.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A、B兩點(diǎn),當(dāng)φ變化時,求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 ,(其中φ為參數(shù)),曲線 ,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,射線l:θ=α(ρ≥0)與曲線C1 , C2分別交于點(diǎn)A,B(均異于原點(diǎn)O)
(1)求曲線C1 , C2的極坐標(biāo)方程;
(2)當(dāng) 時,求|OA|2+|OB|2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015全國統(tǒng)考II)設(shè)函數(shù)f(x)=ln(1+|x|)-,則使得f(x)f(2x-1)成立的x的取值范圍是()
A.(,1)
B.(-,)(1,+)
C.(-,)
D.(-,-)(,+)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1:(t為參數(shù),且t≠0),其中0 , 在以O(shè)為極點(diǎn)x軸正半軸為極軸的極坐標(biāo)系中,曲線C2::=2sin , C3:=2cos
(1)求C2與C3交點(diǎn)的直角坐標(biāo)
(2)若C1與C2相交于點(diǎn)A,C1與C3相交于點(diǎn)B,求|AB|最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,點(diǎn)E、F分別在A1B1、C1D1上,A1E=D1F=4,過點(diǎn)E,F的平面與此長方體的面相交,交線圍成一個正方形。
(1)(Ⅰ)在圖中畫出這個正方形(不必說出畫法和理由);
(2)(Ⅱ)求直線AF與平面所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·四川)如圖,A , B , C , D為平面四邊形ABCD的四個內(nèi)角.
(1)證明:tan=
(2)若A+C=180°, AB=6, BC=3, CD=4, AD=5, 求tan+tan+tan+tan的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com