實(shí)數(shù)x,y滿足則z=2x+y的最小值為(  )
A.-2B.2C.3D.4
C
畫(huà)出約束條件表示的可行域,如圖所示,

由可行域知目標(biāo)函數(shù)z=2x+y過(guò)點(diǎn)時(shí)取最小值,此時(shí)最小值為zmin=2×=3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知實(shí)數(shù)x,y滿足約束條件,則z=2x+y的最小值是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)變量x,y滿足約束條件,則目標(biāo)函數(shù)的最大值為___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某運(yùn)輸公司有12名駕駛員和19名工人,有8輛載重為10噸的甲型卡車(chē)和7輛載重為6噸的乙型卡車(chē).某天需運(yùn)往A地至少72噸的貨物,派用的每輛車(chē)需滿載且只運(yùn)送一次,派用的每輛甲型卡車(chē)需配2名工人,運(yùn)送一次可得利潤(rùn)450元;派用的每輛乙型卡車(chē)需配1名工人,運(yùn)送一次可得利潤(rùn)350元.該公司合理計(jì)劃當(dāng)天派用兩類(lèi)卡車(chē)的車(chē)輛數(shù),可得最大利潤(rùn)z=(  )
A.4650元B.4700元
C.4900元D.5000元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)實(shí)數(shù)滿足不等式組,則的最大值是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

假設(shè)每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機(jī)變量.記一天中從甲地去乙地的旅客人數(shù)不超過(guò)900的概率為p0.
(1)求p0的值;(參考數(shù)據(jù):若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4,P(μ-3σ<X≤μ+3σ)=0.997 4)
(2)某客運(yùn)公司用A、B兩種型號(hào)的車(chē)輛承擔(dān)甲、乙兩地間的長(zhǎng)途客運(yùn)業(yè)務(wù),每車(chē)每天往返一次.A、B兩種車(chē)輛的載客量分別為36人和60人,從甲地去乙地的營(yíng)運(yùn)成本分別為1 600元/輛和2 400元/輛.公司擬組建一個(gè)不超過(guò)21輛車(chē)的客運(yùn)車(chē)隊(duì),并要求B型車(chē)不多于A型車(chē)7輛.若每天要以不小于p0的概率運(yùn)完從甲地去乙地的旅客,且使公司從甲地去乙地的營(yíng)運(yùn)成本最小,那么應(yīng)配備A型車(chē)、B型車(chē)各多少輛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若A為不等式組表示的平面區(qū)域,則當(dāng)實(shí)數(shù)a從-2連續(xù)變化到0時(shí),動(dòng)直線x+y=a掃過(guò)A中部分的區(qū)域的面積為(  )
A.B.C.2 D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若實(shí)數(shù)滿足條件,則的最大值為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若實(shí)數(shù)滿足,則的最大值是_________.

查看答案和解析>>

同步練習(xí)冊(cè)答案