關(guān)于直線a,b,c以及平面M,N,給出下面命題: 

①若a//M,b//M, 則a//b                ②若a//M, b⊥M,則b⊥a

③若aM,bM,且c⊥a,c⊥b,則c⊥M   ④若a⊥M, a//N,則M⊥N

其中正確的命題是

A.①②             B.②③             C.②④             D.①④

 

【答案】

C

【解析】

試題分析:在①中,直線a,b可以異面和相交,故①錯(cuò)誤;②正確;在③中,若兩直線a,b不相交,則c與M不垂直,故③錯(cuò)誤;④正確。故選C。

考點(diǎn):命題的真假性

點(diǎn)評:本題是判斷直線、平面之間的位置關(guān)系的題目,著重考查空間想象能力。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線C的中心在原點(diǎn),它的右焦點(diǎn)是拋物線y2=
8
3
3
x
的焦點(diǎn),且該點(diǎn)到雙曲線的一條準(zhǔn)線的距離為
3
2

(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)直線l:y=kx+1與雙曲線C交于兩點(diǎn)A、B,試問:
(1)當(dāng)k為何值時(shí),以AB為直徑的圓過原點(diǎn);
(2)是否存在這樣的實(shí)數(shù)k,使A、B關(guān)于直線y=ax對稱(a為常數(shù)),若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)函數(shù)數(shù)學(xué)公式,給出以下四個(gè)論斷:
①它的圖象關(guān)于直線數(shù)學(xué)公式對稱;
②它的圖象關(guān)于點(diǎn)(數(shù)學(xué)公式,0)對稱;
③它的最小正周期是π;
④在區(qū)間[數(shù)學(xué)公式]上是增函數(shù).
以其中兩個(gè)論斷作為條件,余下論斷作為結(jié)論,一個(gè)正確的命題:
條件 ______________,結(jié)論 ______________.


  1. A.
    ①②?③④
  2. B.
    ③④?①②
  3. C.
    ②④?①③
  4. D.
    ①③?②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北黃州區(qū)一中高三11月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓問在圓C上是否存在兩點(diǎn)A,B關(guān)于直線對稱,且以AB為直徑的圓經(jīng)過原點(diǎn)?若存在,寫出直線AB的方程,若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

定義在R上的函數(shù)f(x)滿足:f(x+2)+f(x)=0,且函數(shù)f(x+1)為奇函數(shù),對于下列命題:
①函數(shù)f(x)是以T=2為周期的函數(shù);
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(1,0)對稱;
③函數(shù)f(x)的圖象關(guān)于直線x=2對稱;
④函數(shù)f(x)的最大值為f(2);
⑤f(2011)=0.
其中正確結(jié)論的序號為


  1. A.
    ①③⑤
  2. B.
    ②③⑤
  3. C.
    ②③④
  4. D.
    ①④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知定義域?yàn)镽的函數(shù)y=f(x),則下列命題:
①若f(x-1)=f(1-x)恒成立,則函數(shù)y=f(x)的圖象關(guān)于直線x=1的對稱;
②若f(x+1)+f(1-x)=0恒成立,則函數(shù)y=f(x)的圖象關(guān)于(1,0)點(diǎn)對稱;
③函數(shù)y=f(x-1)的圖象與函數(shù)y=f(1-x)的圖象關(guān)于y軸對稱;
④函數(shù)y=-f(x-1)的圖象與函數(shù)y=f(1-x)的圖象關(guān)于原點(diǎn)對稱;
⑤若f(1+x)+f(x-1)=0恒成立,則函數(shù)y=f(x)以4為周期.
其中真命題的有


  1. A.
    ①④
  2. B.
    ②③
  3. C.
    ②⑤
  4. D.
    ③⑤

查看答案和解析>>

同步練習(xí)冊答案