【題目】通過隨機(jī)詢問110名性別不同的中學(xué)生是否愛好運(yùn)動(dòng),得到如下的列聯(lián)表:
男 | 女 | 總計(jì) | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
由K2= 得,K2= ≈7.8
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好運(yùn)動(dòng)與性別有關(guān)”
B.有99%以上的把握認(rèn)為“愛好運(yùn)動(dòng)與性別有關(guān)”
C.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好運(yùn)動(dòng)與性別無關(guān)”
D.有99%以上的把握認(rèn)為“愛好運(yùn)動(dòng)與性別無關(guān)”
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)為,其左頂點(diǎn)在圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線交橢圓于兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為(點(diǎn)與點(diǎn)不重合),且直線與軸的交于點(diǎn),試問的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年年底,某商業(yè)集團(tuán)根據(jù)相關(guān)評(píng)分標(biāo)準(zhǔn),對(duì)所屬20家商業(yè)連鎖店進(jìn)行了年度考核評(píng)估,并依據(jù)考核評(píng)估得分(最低分60分,最高分100分)將這些連鎖店分別評(píng)定為A,B,C,D四個(gè)類型,其考核評(píng)估標(biāo)準(zhǔn)如下表:
評(píng)估得分 | [60,70) | [70,80) | [80,90) | [90,100] |
評(píng)分類型 | D | C | B | A |
考核評(píng)估后,對(duì)各連鎖店的評(píng)估分?jǐn)?shù)進(jìn)行統(tǒng)計(jì)分析,得其頻率分布直方圖如下:
(Ⅰ)評(píng)分類型為A的商業(yè)連鎖店有多少家;
(Ⅱ)現(xiàn)從評(píng)分類型為A,D的所有商業(yè)連鎖店中隨機(jī)抽取兩家做分析,求這兩家來自同一評(píng)分類型的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,側(cè)棱PD⊥底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)求證:PA∥平面BDE;
(2)求證:PB⊥平面DEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出40名,將其成績(jī)(均為整數(shù))整理后畫出的頻率分布直方圖如下:
觀察圖形,回答下列問題:
(1)估計(jì)這次環(huán)保知識(shí)競(jìng)賽成績(jī)的中位數(shù);
(2)從成績(jī)是80分以上(包括80分)的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列命題:
①乘積(a+b+c+d)(p+q+r)(m+n)展開式的項(xiàng)數(shù)是24;
②由1、2、3、4、5組成沒有重復(fù)數(shù)字且1、2都不與5相鄰的五位數(shù)的個(gè)數(shù)是36;
③某會(huì)議室第一排共有8個(gè)座位,現(xiàn)有3人就座,若要求每人左右均有空位,那么不同的坐法種數(shù)為24;
④已知(1+x)8=a0+a1x+…+a8x8 , 其中a0 , a1 , …,a8中奇數(shù)的個(gè)數(shù)為2.
其中真命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定兩個(gè)長(zhǎng)度為1的平面向量 和 ,它們的夾角為120°.如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧 上變動(dòng).若 ,其中x,y∈R,試求x+y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司對(duì)營(yíng)銷人員有如下規(guī)定:
①年銷售額 (萬元)在8萬元以下,沒有獎(jiǎng)金;
②年銷售額 (萬元), 時(shí),獎(jiǎng)金為萬元,且, ,且年銷售額越大,獎(jiǎng)金越多;
③年銷售額超過64萬元,按年銷售額的10%發(fā)獎(jiǎng)金.
(1)求獎(jiǎng)金y關(guān)于x的函數(shù)解析式;
(2)若某營(yíng)銷人員爭(zhēng)取獎(jiǎng)金 (萬元),則年銷售額 (萬元)在什么范圍內(nèi)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com