【題目】商品的銷售價格與銷售量密切相關,為更精準地為商品確定最終售價,商家對商品A按以下單價進行試售,得到部分的數(shù)據(jù)如下:

單價(元)

銷量(件)

1)求銷量關于的線性回歸方程;

2)預計今后的銷售中,銷量與單價服從(1)中的線性回歸方程,已知每件商品的成本是元,為了獲得最大利潤,商品的單價應定為多少元?(結果保留整數(shù))

參考數(shù)據(jù):,,)(參考公式:

【答案】1;(2.

【解析】

1)求出的值,將表格中的數(shù)據(jù)代入最小二乘法公式求出的值,即可求出回歸直線方程;

2)設商品的單價應定為元,可得出利潤關于的函數(shù)解析式為,再由二次函數(shù)的基本性質求最值.

(1),

.

銷量關于的線性回歸方程為;

2)設商品的單價應定為元,則利潤,

時,獲得的利潤最大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知在多面體中,,,且平面平面.

(1)設點為線段的中點,試證明平面;

(2)若直線與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4—4:坐標系與參數(shù)方程]

在直角坐標系中,曲線的方程為.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)求的直角坐標方程;

2)若有且僅有三個公共點,求的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,已知內角A,BC所對的邊分別為a,b,c,向量m=(2sin B,- ),n,且mn.

(1)求銳角B的大;

(2)如果b=2,求△ABC的面積SABC的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四邊形為矩形, ,的中點,沿折起,得到四棱錐,的中點為,在翻折過程中,得到如下有三個命題:

平面,且的長度為定值;

三棱錐的最大體積為

③在翻折過程中,存在某個位置,使得.

其中正確命題的序號為__________.(寫出所有正確結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖為我國數(shù)學家趙爽3世紀初在為《周髀算經》作注時驗證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個小區(qū)域涂色,規(guī)定每個區(qū)域只涂一種顏色,相鄰區(qū)域顏色不同,則區(qū)域涂色不相同的概率為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個多面體的三視圖正視圖、側視圖、俯視圖如圖所示,M,N分別是,的中點.

1)求證:平面;

2)求證:平面

3)若這個多面體的六個頂點A,BC,,,都在同一個球面上,求這個球的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn,且a2+2a4a9,S636

1)求an,Sn;

2)若數(shù)列{bn}滿足b11,,求證:nN*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某校隨機抽取100名學生,獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),整理得到頻數(shù)分布表和頻率分布直方圖如下.

組號

分組

頻數(shù)

1

[0,2)

6

2

[2,4)

8

3

[4,6)

17

4

[6,8)

22

5

[8,10)

25

6

[10,12)

12

7

[12,14)

6

8

[14,16)

2

9

[16,18)

2

合計

100

(1)從該校隨機選取一名學生,試估計這名學生該周課外閱讀時間少于12小時的頻率;

(2)求頻率分布直方圖中的ab的值.

查看答案和解析>>

同步練習冊答案