【題目】隨著小汽車的普及,“駕駛證”已經(jīng)成為現(xiàn)代人“必考”的證件之一.若某人報名參加了駕駛證考試,要順利地拿到駕駛證,他需要通過四個科目的考試,其中科目二為場地考試.在一次報名中,每個學員有5次參加科目二考試的機會(這5次考試機會中任何一次通過考試,就算順利通過,即進入下一科目考試;若5次都沒有通過,則需重新報名),其中前2次參加科目二考試免費,若前2次都沒有通過,則以后每次參加科目二考試都需要交200元的補考費.某駕校對以往2000個學員第1次參加科目二考試進行了統(tǒng)計,得到下表:

考試情況

男學員

女學員

第1次考科目二人數(shù)

1200

800

第1次通過科目二人數(shù)

960

600

第1次未通過科目二人數(shù)

240

200

若以上表得到的男、女學員第1次通過科目二考試的頻率分別作為此駕校男、女學員每次通過科目二考試的概率,且每人每次是否通過科目二考試相互獨立.現(xiàn)有一對夫妻同時在此駕校報名參加了駕駛證考試,在本次報名中,若這對夫妻參加科目二考試的原則為:通過科目二考試或者用完所有機會為止.

(1)求這對夫妻在本次報名中參加科目二考試都不需要交補考費的概率;

(2)若這對夫妻前2次參加科目二考試均沒有通過,記這對夫妻在本次報名中參加科目二考試產(chǎn)生的補考費用之和為元,求的分布列與數(shù)學期望.

【答案】(1);(2)見解析.

【解析】

事件表示男學員在第次考科目二通過,事件表示女學員在第次考科目二通過(其中)(1)這對夫妻是否通過科目二考試相互獨立,利用獨立事件乘法公式即可求得;(2)補考費用之和為元可能取值為400,600,800,1000,1200,根據(jù)題意可求相應(yīng)的概率,進而可求X的數(shù)學期望.

事件表示男學員在第次考科目二通過,

事件表示女學員在第次考科目二通過(其中.

(1)事件表示這對夫妻考科目二都不需要交補考費.

.

(2)的可能取值為400,600,800,1000,1200.

,

,

,

.

的分布列為:

400

600

800

1000

1200

(元).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某學生對函數(shù)的性質(zhì)進行研究,得出如下的結(jié)論:

函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;

是函數(shù)圖象的一個對稱中心;

函數(shù)圖象關(guān)于直線對稱;

存在常數(shù),使對一切實數(shù)x均成立,

其中正確命題的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在五面體中,側(cè)面是正方形,是等腰直角三角形,點是正方形對角線的交點,.

(1)證明:平面;

(2)若側(cè)面與底面垂直,求五面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=|x+1|+2|xm|

1)當m2時,求fx≤9的解集;

2)若fx≤2的解集不是空集,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線與圓 )相交于, , ,四個點,

1)求的取值范圍;

2)設(shè)四邊形的面積為,當最大時,求直線與直線的交點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三陵錐中,為等腰直角三角形,,為正三角形,的中點.

1)證明:平面平面;

2)若二面角的平面角為銳角,且棱錐的體積為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當時,求函數(shù)的極小值;

(Ⅱ)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為梯形, 底面 , , . 

1)求證:平面 平面;

2)設(shè)上的一點,滿足,若直線與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)只有一個極值點,則k的取值范圍為

A.B.C.D.

查看答案和解析>>

同步練習冊答案