【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),在以為極點, 軸的正半軸為極軸的極坐標系中,曲線是圓心為,半徑為1的圓.

(1)求曲線, 的直角坐標方程;

(2)設(shè)為曲線上的點, 為曲線上的點,求的取值范圍.

【答案】(1)的直角坐標方程為 的直角坐標方程為;(2)的取值范圍是.

【解析】試題分析:(Ⅰ)消去參數(shù)可得C1的直角坐標方程,易得曲線C2的圓心的直角坐標為(0,3),可得C2的直角坐標方程;

)設(shè)M(2cossin),由三角函數(shù)和二次函數(shù)可得|MC2|的取值范圍,結(jié)合圓的知識可得答案.

試題解析:

1)消去參數(shù)可得的直角坐標方程為.

曲線的圓心的直角坐標為,

的直角坐標方程為.

2)設(shè),

.

, .

根據(jù)題意可得, ,

的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于集合,定義了一種運算,使得集合中的元素間滿足條件:如果存在元素,使得對任意,都有,則稱元素是集合對運算的單位元素.例如: ,運算為普通乘法;存在,使得對任意,都有,所以元素是集合對普通乘法的單位元素.

下面給出三個集合及相應(yīng)的運算

,運算為普通減法;

{表示階矩陣, },運算為矩陣加法;

(其中是任意非空集合),運算為求兩個集合的交集.

其中對運算有單位元素的集合序號為( )

A. ①②; B. ①③ C. ①②③; D. ②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐PABCD中,ADBC,平面PAC⊥平面ABCDAB=AD=DC=1,

ABC=DCB=60EPC上一點.

Ⅰ)證明:平面EAB⊥平面PAC;

Ⅱ)若△PAC是正三角形EPC中點,求三棱錐AEBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓經(jīng)過為坐標原點,線段的中點在圓上.

(1)求的方程;

(2)直線不過曲線的右焦點,與交于兩點,且與圓相切,切點在第一象限, 的周長是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為,其中為參數(shù),且在直角坐標系中,以坐標原點為極點,以軸正半軸為極軸建立極坐標系.

1)求曲線的極坐標方程;

2)設(shè)是曲線上的一點,直線被曲線截得的弦長為,求點的極坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等式x4a1x3a2x2a3xa4(x1)4b1(x1)3b2(x1)2b3(x1)b4,定義映射f(a1a2,a3,a4)(b1,b2b3,b4),f(4,3,2,1)(  )

A. (1,2,3,4) B. (0,3,4,0)

C. (0,-3,4,-1) D. (1,0,2,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從A、B兩地區(qū)分別隨機調(diào)查了20個用戶,得到用戶對產(chǎn)品的滿意度評分如下:

A地區(qū):

62

73

81

92

95

85

74

64

53

76


78

86

95

66

97

78

88

82

76

89

B地區(qū):

73

83

62

51

91

46

53

73

64

82


93

48

95

81

74

56

54

76

65

79

)根據(jù)兩組數(shù)據(jù)完成兩地區(qū)用戶滿意度評分的莖葉圖,并通過莖葉圖比較兩地區(qū)滿意度的平均值及分散程度(不要求算出具體值,給出結(jié)論即可):

)根據(jù)用戶滿意度評分,將用戶的滿意度從低到高分為三個等級:

滿意度評分

低于70

70分到89

不低于90

滿意度等級

不滿意

滿意

非常滿意

記事件C“A地區(qū)用戶的滿意度等級高于B地區(qū)用戶的滿意度等級,假設(shè)兩地區(qū)用戶的評價結(jié)果相互獨立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求C的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為梯形,平面平面

為側(cè)棱的中點,且.

(1)證明: 平面;

(2)若點到平面的距離為,且,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為拋物線的焦點,點為點關(guān)于原點的對稱點,點在拋物線上,則下列說法錯誤的是( )

A. 使得為等腰三角形的點有且僅有4個

B. 使得為直角三角形的點有且僅有4個

C. 使得的點有且僅有4個

D. 使得的點有且僅有4個

查看答案和解析>>

同步練習(xí)冊答案