【題目】已知函數(shù),其圖象的相鄰兩條對稱軸之間的距離為.
(1)求函數(shù)的解析式及對稱中心;
(2)將函數(shù)的圖象向左平移個單位長度,再向上平移個單位長度得到函數(shù)的圖象,若關(guān)于x的方程在區(qū)間上有兩個不相等的實根,求實數(shù)m的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,記為與原點距離等于的全體直線所成的集合.問:是否存在常數(shù),使得對任意的直線,均存在、,、分別過 與橢圓的交點、,且有?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電子科技公司由于產(chǎn)品采用最新技術(shù),銷售額不斷增長,最近個季度的銷售額數(shù)據(jù)統(tǒng)計如下表(其中表示年第一季度,以此類推):
季度 | |||||
季度編號x | |||||
銷售額y(百萬元) |
(1)公司市場部從中任選個季度的數(shù)據(jù)進行對比分析,求這個季度的銷售額都超過千萬元的概率;
(2)求關(guān)于的線性回歸方程,并預(yù)測該公司的銷售額.
附:線性回歸方程:其中,
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某專賣店為了對新產(chǎn)品進行合理定價,將該產(chǎn)品按不同的單價試銷,調(diào)查統(tǒng)計如下表:
售價(元) | 4 | 5 | 6 | 7 | 8 |
周銷量(件) | 90 | 85 | 83 | 79 | 73 |
(1)求周銷量y(件)關(guān)于售價x(元)的線性回歸方程;
(2)按(1)中的線性關(guān)系,已知該產(chǎn)品的成本為2元/件,為了確保周利潤大于598元,則該店應(yīng)該將產(chǎn)品的售價定為多少?
參考公式:,.
參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】遞增的等差數(shù)列的前項和為.若與是方程的兩個實數(shù)根.
(1)求數(shù)列的通項公式;
(2)當為多少時,取最小值,并求其最小值;
(3)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】首屆中國國際進口博覽會于2018年11月5日至10日在上海的國家會展中心舉辦.國家展、企業(yè)展、經(jīng)貿(mào)論壇、高新產(chǎn)品匯集……首屆進博會高點紛呈.一個更加開放和自信的中國,正用實際行動為世界構(gòu)筑共同發(fā)展平臺,展現(xiàn)推動全球貿(mào)易與合作的中國方案.
某跨國公司帶來了高端智能家居產(chǎn)品參展,供購商洽談采購,并決定大量投放中國市場.已知該產(chǎn)品年固定研發(fā)成本30萬美元,每生產(chǎn)一臺需另投入90美元.設(shè)該公司一年內(nèi)生產(chǎn)該產(chǎn)品萬臺且全部售完,每萬臺的銷售收入為萬美元,
(1)寫出年利潤(萬美元)關(guān)于年產(chǎn)量(萬臺)的函數(shù)解析式;(利潤=銷售收入-成本)
(2)當年產(chǎn)量為多少萬臺時,該公司獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本x(單位:萬元)與產(chǎn)品銷售收入y(單位:萬元)存在較好的線性關(guān)系,下表記錄了最近5次該產(chǎn)品的相關(guān)數(shù)據(jù).
x(萬元) | 3 | 5 | 7 | 9 | 11 |
y(萬元) | 8 | 10 | 13 | 17 | 22 |
(1)求y關(guān)于x的線性回歸方程;
(2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本12萬元的毛利率更大還是投入成本15萬元的毛利率更大(毛利率)?
相關(guān)公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的個數(shù)是_________.
(1)命題“若,則方程有實數(shù)根”的逆否命題為“若方程無實數(shù)根,則”.
(2)命題“,”的否定“,”.
(3)若為假命題,則,均為假命題.
(4)“”是“直線:與直線:平行”的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當時,求函數(shù)的單調(diào)減區(qū)間;
(2)若有三個不同的零點,求的取值范圍;
(3)設(shè),若無極大值點,有唯一的一個極小值點,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com