3.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)A(0,1),且|AF1|=$\sqrt{5}$,橢圓C的離心率為$\frac{2}{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)A作直線l與橢圓C交于M,N兩點(diǎn),若3$\overrightarrow{AM}$+2$\overrightarrow{AN}$=$\overrightarrow 0$,求直線l的方程.

分析 (1)由|AF1|=$\sqrt{5}$求得c,結(jié)合橢圓離心率求得a,進(jìn)一步求得b,則橢圓方程可求;
(2)由題意可知,直線l的斜率存在,設(shè)直線方程為y=kx+1.由$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1}\end{array}\right.$,得(5+9k2)x2+18kx-36=0.設(shè)M(x1,y1),N(x2,y2),再利用根與系數(shù)關(guān)系結(jié)合3$\overrightarrow{AM}$+2$\overrightarrow{AN}$=$\overrightarrow 0$得到k值,由此能求出直線l的方程.

解答 解:(1)由|AF1|=$\sqrt{5}$,得c2+1=5,解得c=2.
又$e=\frac{c}{a}=\frac{2}{3}$,∴a=3,則b2=a2-c2=5.
∴橢圓C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1$;
(2)由題意可知,直線l的斜率存在,設(shè)直線方程為y=kx+1,
聯(lián)立$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1}\end{array}\right.$,得(5+9k2)x2+18kx-36=0.
設(shè)M(x1,y1),N(x2,y2),
則${x}_{1}+{x}_{2}=-\frac{18k}{5+9{k}^{2}},{x}_{1}{x}_{2}=-\frac{36}{5+9{k}^{2}}$,①
由3$\overrightarrow{AM}$+2$\overrightarrow{AN}$=$\overrightarrow 0$,得$\overrightarrow{AM}=-\frac{2}{3}\overrightarrow{AN}$,
∴(x1,y1-1)=$-\frac{2}{3}({x}_{2},{y}_{2}-1)$,則${x}_{1}=-\frac{2}{3}{x}_{2}$,②
把②代入①得:5+9k2=54k2,解得k=$±\frac{1}{3}$.
∴直線l的方程為$y=±\frac{1}{3}x+1$.

點(diǎn)評(píng) 本題考查用待定系數(shù)法求曲線方程的能力,通過(guò)處理直線與圓錐曲線的位置關(guān)系,考查學(xué)生的運(yùn)算能力.通過(guò)向量與幾何問(wèn)題的綜合,考查學(xué)生分析轉(zhuǎn)化問(wèn)題的能力,探究研究問(wèn)題的能力,并體現(xiàn)了合理消元,設(shè)而不解的代數(shù)變形的思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖,集合U為全集,A、B均是U的子集,圖中陰影部分所表示的集合是A∩(∁UB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知點(diǎn)D(x0,y0)為橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上一點(diǎn),直線l:xx0+yy0=2a與直線x=±2分別交于G、H兩點(diǎn),且$\overrightarrow{OG}•\overrightarrow{OH}$=-2(其中O為坐標(biāo)原點(diǎn)),則橢圓E的離心率為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)命題p:函數(shù)f(x)=x3+mx2+(m+$\frac{4}{3}$)x+6在R有極值;
命題q:3x-9x<m對(duì)一切實(shí)數(shù)x恒成立.
如果命題“p∧q”為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.為了解某市居民日常用水量的標(biāo)準(zhǔn),某機(jī)構(gòu)通過(guò)抽樣獲得了100位居民某年的月均用水量(單位:噸),如表是這100位居民月均用水量的頻率分布表,根據(jù)如表解答下列問(wèn)題:
(1)求如表中a和b的值;
(2)請(qǐng)將下面的頻率分布直方圖補(bǔ)充完整,并根據(jù)直方圖估計(jì)該市每位居民月均用水量的中位數(shù)(精確到0.01).
分組頻數(shù)頻率
[0,1)10b
[1,2)200.20
[2,3)a0.30
[3,4)200.20
[4,5)100.10
[5,6]100.10
合計(jì)1001.00

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.2010年廣東亞運(yùn)會(huì),某運(yùn)動(dòng)項(xiàng)目設(shè)置了難度不同的甲、乙兩個(gè)系列,每個(gè)系列都有K和D兩個(gè)動(dòng)作,比賽時(shí)每位運(yùn)動(dòng)員自選一個(gè)系列完成,兩個(gè)動(dòng)作得分之和為該運(yùn)動(dòng)員的成績(jī).假設(shè)每個(gè)運(yùn)動(dòng)員完成每個(gè)系列中的兩個(gè)動(dòng)作的得分是相互獨(dú)立的,根據(jù)賽前訓(xùn)練統(tǒng)計(jì)數(shù)據(jù),某運(yùn)動(dòng)員完成甲系列和乙系列的情況如表:
甲系列:
動(dòng)作KD
得分100804010
概率$\frac{3}{4}$$\frac{1}{4}$$\frac{3}{4}$$\frac{1}{4}$
乙系列:
動(dòng)作KD
得分9050200
概率$\frac{9}{10}$$\frac{1}{10}$$\frac{9}{10}$$\frac{1}{10}$
(Ⅰ)現(xiàn)該運(yùn)動(dòng)員最后一個(gè)出場(chǎng),其之前運(yùn)動(dòng)員的最高得分為118分.若該運(yùn)動(dòng)員希望獲得該項(xiàng)目的第一名,應(yīng)選擇哪個(gè)系列,說(shuō)明理由,并求其獲得第一名的概率;
(II)若該運(yùn)動(dòng)員選擇乙系列,求其成績(jī)X的分布列及其數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)集合A={x|-1<x<2},集合B={x|1<x<3},則A∪B={x|-1<x<3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知關(guān)于x的不等式ax2-3x+2>0.
(1)若不等式的解集為全體實(shí)數(shù)集R,求實(shí)數(shù)a的取值范圍;
(2)若不等式的解集為{x|x<1或x>b},
①求a,b的值;
②解關(guān)于x的不等式ax2-(ac+b)x+bc<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.角θ的終邊過(guò)點(diǎn)(sin(α-$\frac{π}{3}$),$\sqrt{3}$),且sin2θ≤0,則α的可能取值范圍是( 。
A.[-$\frac{2π}{3}$,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{4π}{3}$]C.[-$\frac{5π}{3}$,-$\frac{2π}{3}$]D.[0,π]

查看答案和解析>>

同步練習(xí)冊(cè)答案