【題目】橢圓的左右焦點分別為F1,F2,離心率為,過點F1且垂直于x軸的直線被橢圓截得的弦長為,直線l:y=kx+m與橢圓交于不同的A,B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓C上存在點Q滿足: (O為坐標原點).求實數(shù)λ的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是幾何體的平面展開圖,其中四邊形ABCD為正方形,E,F分別為PA,PD的中點,在此幾何體中,給出下面4個結(jié)論:
①直線BE與直線CF共面;②直線BE與直線AF異面;
③直線EF∥平面PBC;④平面BCE⊥平面PAD.
其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若在上為減函數(shù),求的取值范圍;
(2)若關(guān)于的方程在內(nèi)有唯一解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),它與曲線
C:(y-2)2-x2=1交于A、B兩點.
(1)求|AB|的長;
(2)在以O(shè)為極點,x軸的正半軸為極軸建立極坐標系,設(shè)點P的極坐標為,求點P到線段AB中點M的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查甲、乙兩種品牌商品的市場認可度,在某購物網(wǎng)點隨機選取了14天,統(tǒng)計在某確定時間段的銷量,得如下所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖求:
(1)甲、乙兩種品牌商品銷量的中位數(shù)分別是多少?
(2)甲品牌商品銷量在[20,50]間的頻率是多少?
(3)甲、乙兩個品牌商品哪個更受歡迎?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的對稱中心為原點O,焦點在x軸上,離心率為,且點在該橢圓上。
(I)求橢圓C的方程;
(II)過橢圓C的左焦點的直線l與橢圓C相交于兩點,若的面積為,求圓心在原點O且與直線l相切的圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中心在原點的橢圓C1與雙曲線C2具有相同的焦點,F(xiàn)1(﹣c,0),F(xiàn)2(c,0),P為C1與C2在第一象限的交點,|PF1|=|F1F2|且|PF2|=5,若橢圓C1的離心率 ,則雙曲線的離心率e2的范圍是( )
A.
B.
C.(2,3)
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,為坐標原點,動點在圓外,過點作圓的切線,設(shè)切點為.
(1)若點運動到處,求此時切線的方程;
(2)求滿足的點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且滿足條件:①;②.
(1)求的表達式;
(2)當時,證明:;
(3)若函數(shù),討論在上的零點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com