【題目】將一枚骰子先后拋擲兩次.
(1)一共有多少種不同的結(jié)果?
(2)其中向上的數(shù)之和是5的結(jié)果有多少種?
(3)向上的數(shù)之和是5的概率是多少?
【答案】(1)36,(2)見(jiàn)解析(3)
【解析】試題分析:(1)骰子先后拋擲兩次,利用列舉法求出一共有36種不同的結(jié)果.
(2)利用列舉法能求出其中向上的點(diǎn)數(shù)之和是5的結(jié)果有4種.
(3)利用古典概型概率計(jì)算公式能求出向上點(diǎn)點(diǎn)數(shù)之和為5的概率.
試題解析:
(1)先將骰子拋擲一次,它落地時(shí),向上的數(shù)有1,2,3,…,6這6種結(jié)果,每種結(jié)果又對(duì)應(yīng)著第二次拋擲時(shí)的6種可能情況,所以一共有36種不同的結(jié)果.
(2)在(1)的所有結(jié)果中向上的數(shù)之和為5的結(jié)果有(1,4),(2,3),(3,2),(4,1)這4種,其中括號(hào)內(nèi)的前后2個(gè)數(shù)分別為第一、二次拋擲后向上的數(shù),如圖所示,其中坐標(biāo)平面內(nèi)的數(shù)表示相應(yīng)兩次拋擲后向上的數(shù)的和.
(3)所有36種結(jié)果是等可能出現(xiàn)的,其中向上的數(shù)之和是5的結(jié)果(記為事件A)有4種,
因此所求概率P(A)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動(dòng)點(diǎn),且
(1)求證:不論 為何值,總有平面BEF⊥平面ABC;
(2)當(dāng)λ為何值時(shí),平面BEF⊥平面ACD ?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:
①分類(lèi)變量 與 的隨機(jī)變量 越大,說(shuō)明“ 與 有關(guān)系”的可信度越大.
②以模型 去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè) ,將其變換后得到線性方程 ,則 的值分別是 和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為 中, ,則 .
④如果兩個(gè)變量 與 之間不存在著線性關(guān)系,那么根據(jù)它們的一組數(shù)據(jù) 不能寫(xiě)出一個(gè)線性方程
正確的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)f(x)中,滿足“x1x2∈(0,+∞)且x1≠x2有(x1﹣x2)[f(x1)﹣f(x2)]<0”的是( )
A.f(x)= ﹣x
B.f(x)=x3
C.f(x)=lnx+ex
D.f(x)=﹣x2+2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列的前項(xiàng)和為,在同一個(gè)坐標(biāo)系中,及的部分圖象如圖所示,則( ).
A. 當(dāng)時(shí),取得最大值 B. 當(dāng)時(shí),取得最大值
C. 當(dāng)時(shí),取得最小值 D. 當(dāng)時(shí),取得最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(Ⅰ)求a,b的值;
(Ⅱ)已知f(x)在定義域上為減函數(shù),若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0(k為常數(shù))恒成立.求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)隨機(jī)變量X的概率分布列如表,則P(|X﹣3|=1)( )
X | 1 | 2 | 3 | 4 |
P |
| m |
|
|
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,b>0,且a2+b2= ,若a+b≤m恒成立,
(Ⅰ)求m的最小值;
(Ⅱ)若2|x﹣1|+|x|≥a+b對(duì)任意的a,b恒成立,求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,均值與方差都不變;
②設(shè)有一個(gè)回歸方程 ,變量x增加一個(gè)單位時(shí),y平均增加3個(gè)單位;
③線性回歸方程 必經(jīng)過(guò)點(diǎn) ;
④在吸煙與患肺病這兩個(gè)分類(lèi)變量的計(jì)算中,從獨(dú)立性檢驗(yàn)知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說(shuō)現(xiàn)有100人吸煙,那么其中有99人患肺。渲绣e(cuò)誤的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com