【題目】近期,某超市針對(duì)一款飲料推出刷臉支付活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來(lái)越多的人開始使用刷臉支付.該超市統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用刷臉支付的人次,用表示活動(dòng)推出的天數(shù),表示每天使用刷臉支付的人次,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
(1)在推廣期內(nèi),與(均為大于零的常數(shù))哪一個(gè)適宜作為刷臉支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表中的數(shù)據(jù),求關(guān)于的回歸方程,并預(yù)測(cè)活動(dòng)推出第天使用刷臉支付的人次;
(3)已知一瓶該飲料的售價(jià)為元,顧客的支付方式有三種:現(xiàn)金支付、掃碼支付和刷臉支付,其中有使用現(xiàn)金支付,使用現(xiàn)金支付的顧客無(wú)優(yōu)惠;有使用掃碼支付,使用掃碼支付享受折優(yōu)惠;有使用刷臉支付,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用刷臉支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.根據(jù)所給數(shù)據(jù)估計(jì)購(gòu)買一瓶該飲料的平均花費(fèi).
參考數(shù)據(jù):其中,
參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:.
【答案】(1)適宜(2),活動(dòng)推出第天使用刷臉支付的人次為(3)平均花費(fèi)為(元)
【解析】
(1)直接根據(jù)統(tǒng)計(jì)數(shù)據(jù)表判斷,適宜;
(2)把,兩邊同時(shí)取常用對(duì)數(shù),,則與兩者線性相關(guān),根據(jù)已知條件求出關(guān)與的線性回歸方程,進(jìn)而轉(zhuǎn)化為關(guān)與的線性回歸方程;
(3)記購(gòu)買一瓶該飲料的花費(fèi)為(元),則的取值可能為:,求出的分布,進(jìn)而求出的期望.
(1)直接根據(jù)統(tǒng)計(jì)數(shù)據(jù)表判斷,
適宜作為掃碼支付的人數(shù)關(guān)于活動(dòng)推出天數(shù)的回歸方程類型;
(2)因?yàn)?/span>,兩邊同時(shí)取常用對(duì)數(shù)得:,
設(shè)所以,
因?yàn)?/span>,
所以,
把樣本中心點(diǎn)代入,得:,
所以,,
所以關(guān)于的回歸方程式:,
把代入上式,,
所以活動(dòng)推出第天使用刷臉支付的人次為;
(3)記購(gòu)買一瓶該飲料的花費(fèi)為(元),則的取值可能為:,
,
,
,
,
分布列為:
因?yàn)?/span>,
所以估計(jì)購(gòu)買一瓶該飲料的平均花費(fèi)為(元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一圓經(jīng)過點(diǎn),,且它的圓心在直線上.
(I)求此圓的方程;
(II)若點(diǎn)為所求圓上任意一點(diǎn),且點(diǎn),求線段的中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2bcosC+c=2a.
(Ⅰ)求角B的大小;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在區(qū)間上有最大值和最小值,設(shè).
(1)求,的值;
(2)若不等式在上有解,求實(shí)數(shù)的取值范圍;
(3)若有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行硏究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差x() | 8 | 11 | 13 | 12 | 10 |
發(fā)芽數(shù)y(顆) | 22 | 27 | 31 | 35 | 26 |
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均不小于27”的概率.
(2)若選取的是3月1日與3月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)3月2日至3月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(參考公式:回歸直線的方程是,其中,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“克拉茨猜想”又稱“猜想”,是德國(guó)數(shù)學(xué)家洛薩克拉茨在1950年世界數(shù)學(xué)家大會(huì)上公布的一個(gè)猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘3加1,不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,最終都能夠得到1.己知正整數(shù)經(jīng)過6次運(yùn)算后得到1,則的值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于不等式,其中.
(1)試求不等式的解集;
(2)對(duì)于不等式的解集,若滿足(其中為整數(shù)集).試探究集合能否為有限集?若能,求出使得集合中元素個(gè)數(shù)最少時(shí)的取值范圍,并用列舉法表示集合;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科研機(jī)構(gòu)為了研究喝酒與糖尿病是否有關(guān),現(xiàn)對(duì)該市30名男性成人進(jìn)行了問卷調(diào)查,并得到了如下列聯(lián)表,規(guī)定“平均每天喝100ml以上的”為常喝.已知在所有的30人中隨機(jī)抽取1人,是糖尿病的概率為.
常喝 | 不常喝 | 合計(jì) | |
有糖尿病 | 2 | ||
無(wú)糖尿病 | 18 | ||
合計(jì) | 30 |
(1)請(qǐng)將上表補(bǔ)充完整;
(2)是否有的把握認(rèn)為糖尿病與喝酒有關(guān)?請(qǐng)說明理由.
(3)已知常喝酒且有糖尿病的人中恰有兩名女性,現(xiàn)從常喝酒且有糖尿病的人中隨機(jī)抽取2人,求恰好抽到一名男性和一名女性的概率.
參考公式:
參考數(shù)據(jù):
k |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com