【題目】已知函數(shù),

1)若直線是曲線的一條切線,求k的值;

2)當時,直線與曲線無交點,求整數(shù)k的最大值.

【答案】12;(23

【解析】

1)先求函數(shù)的導數(shù),設出切點坐標,根據(jù)切線方程建立等量關系,求出切點坐標,從而可得k的值;

2)把交點問題轉化為函數(shù)的零點問題,結合導數(shù),求解單調性及最值,然后可得整數(shù)k的最大值.

1)由題意知,設切點為

在點P處的切線方程為

整理得

,

,,上單調遞增;當,,上單調遞減.

所以的最大值為,即,故

2)令,

①當時,,所以上單調遞增.

所以,即上無零點.

②當時,由,得

時,,所以上單調遞減;

時,,所以上單調遞增.

的最小值為

,則,

所以上單調遞減,

,,因此k的最大值為3

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求證:當時,對任意恒成立;

(2)求函數(shù)的極值;

(3)時,若存在,滿足,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為F,過F的直線交拋物線C兩點.

(Ⅰ)當時,求的值;

(Ⅱ)過點A作拋物線準線的垂線,垂足為E,過點BEF的垂線,交拋物線于另一點D,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小王于2015年底貸款購置了一套房子,根據(jù)家庭收入情況,小王選擇了10年期每月還款數(shù)額相同的還貸方式,且截止2019年底,他沒有再購買第二套房子.下圖是2016年和2019年小王的家庭收入用于各項支出的比例分配圖,根據(jù)以上信息,判斷下列結論中正確的是(

A.小王一家2019年用于飲食的支出費用跟2016年相同

B.小王一家2019年用于其他方面的支出費用是2016年的3

C.小王一家2019年的家庭收入比2016年增加了1

D.小王一家2019年用于房貸的支出費用比2016年減少了

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓的方程為.以原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求的交點的極坐標;

2)設的一條直徑,且不在軸上,直線兩點,直線兩點,求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】足球運動被譽為世界第一運動”.為推廣足球運動,某學校成立了足球社團由于報名人數(shù)較多,需對報名者進行點球測試來決定是否錄取,規(guī)則如下:

1)下表是某同學6次的訓練數(shù)據(jù),以這150個點球中的進球頻率代表其單次點球踢進的概率.為加入足球社團,該同學進行了點球測試,每次點球是否踢進相互獨立,將他在測試中所踢的點球次數(shù)記為,求

2)社團中的甲、乙、丙三名成員將進行傳球訓練,從甲開始隨機地將球傳給其他兩人中的任意一人,接球者再隨機地將球傳給其他兩人中的任意一人,如此不停地傳下去,且假定每次傳球都能被接到.記開始傳球的人為第1次觸球者,接到第n次傳球的人即為第次觸球者,第n次觸球者是甲的概率記為.

i)求,(直接寫出結果即可);

ii)證明:數(shù)列為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知橢圓經(jīng)過,且右焦點坐標為.

1)求橢圓的標準方程;

2)設A,B為橢圓的左,右頂點,C為橢圓的上頂點,P為橢圓上任意一點(異于A,B兩點),直線AC與直線BP相交于點M,直線BC與直線AP相交于點N,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓上一點,以點及橢圓的左、右焦點,為頂點的三角形面積為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)過作斜率存在且互相垂直的直線,,兩交點的中點,兩交點的中點,求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,bc均為正數(shù),設函數(shù)fx)=|xb||x+c|+axR

1)若a2b2c2,求不等式fx)<3的解集;

2)若函數(shù)fx)的最大值為1,證明:

查看答案和解析>>

同步練習冊答案