【題目】為慶祝國慶節(jié),某中學(xué)團(tuán)委組織了“歌頌祖國,愛我中華”知識競賽,從參加考試的學(xué)生中抽出60名,將其成績(成績均為整數(shù))分成[40,50),[50,60),…,[90,100)六組,并畫出如圖所示的部分頻率分布直方圖,觀察圖形,回答下列問題:
(1)求第四組的頻率,并補(bǔ)全這個頻率分布直方圖;
(2)請根據(jù)頻率分布直方圖,估計(jì)樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表)
【答案】(1)第四組的頻率為0.3,直方圖見解析;(2)眾數(shù):75,中位數(shù):,均分為71分
【解析】
(1)由各組的頻率和等于1求解第四組頻率,再補(bǔ)全直方圖即可
(2)利用最高的矩形得眾數(shù);利用左右面積相等求中位數(shù);利用組中值估算抽樣學(xué)生的平均分
(1)因?yàn)楦鹘M的頻率和等于1,所以第四組的頻率為.
補(bǔ)全的頻率分布直方圖如圖所示.
(2)眾數(shù)為:,
設(shè)中位數(shù)為x,則
抽取學(xué)生的平均分約為45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71(分),所以可估計(jì)這次考試的平均分為71分.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)營的消費(fèi)品進(jìn)價(jià)每件14元,月銷售量(百件)與銷售價(jià)格p(元)的關(guān)系如下圖,每月各種開支2000元.
(1)寫出月銷售量(百件)與銷售價(jià)格p(元)的函數(shù)關(guān)系;
(2)寫出月利潤y(元)與銷售價(jià)格p(元)的函數(shù)關(guān)系:
(3)當(dāng)商品價(jià)格每件為多少元時(shí),月利潤最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的上頂點(diǎn)為點(diǎn),右焦點(diǎn)為.延長交橢圓于點(diǎn),且滿足.
(1)試求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)作與軸不重合的直線和橢圓交于兩點(diǎn),設(shè)橢圓的左頂點(diǎn)為點(diǎn),且直線分別與直線交于兩點(diǎn),記直線的斜率分別為,則與之積是否為定值?若是,求出該定值;若不是,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列各組命題,其中是的充分必要條件的是( )
①:或;:有兩個不同的零點(diǎn)
②;是偶函數(shù);
③:;:
④:;:,,
A.④B.③C.②D.①
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某摸球游戲的規(guī)則如下:從裝有5個大小、形狀完全相同的小球的盒中摸球(其中3個紅球、2個黃球),每次摸一個球記錄顏色并放回,若摸出紅球記1分,摸出黃球記2分.
(1)求“摸球三次得分為5分”的概率;
(2)設(shè)ξ為摸球三次所得的分?jǐn)?shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCPE中,平面PAC⊥平面ABC,AC⊥BC,PE∥BC,2PE=BC,M是線段AE的中點(diǎn),N是線段PA上一點(diǎn),且滿足AN=AP(0<<1).
(Ⅰ)若,求證:MN⊥PC;
(Ⅱ)是否存在,使得三棱錐M-ACN與三棱錐B-ACP的體積比為1:12?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為數(shù)列的前項(xiàng)和,,,平面內(nèi)三個不共線的向量,,滿足,若點(diǎn),,在同一直線上,則______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐的底面是菱形.
(1)若,求證:平面;
(2),分別是,上的點(diǎn),若平面,,求的值;
(3)若,平面平面,,判斷是否為等腰三角形?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com