設(shè)定義在R上的函數(shù)f(x),對(duì)任意x,y∈R,有f(x+y)=f(x)•f(y),且當(dāng)x>0時(shí),恒有f(x)>1,若f(1)=2.
(1)求f(0);
(2)求證:x∈R時(shí)f(x)為單調(diào)遞增函數(shù).
分析:(1)采用賦值法,令x=y=0,即可求得f(0);
(2)對(duì)任意x,y∈R,有f(x+y)=f(x)•f(y),可求得f(x)=f2(
x
2
)
≥0,進(jìn)一步可求得f(x)>0,再利用單調(diào)性的定義即可證明f(x)為單調(diào)遞增函數(shù).
解答:解:(1)令x=y=0,f(0)=f2(0)⇒f(0)=0或f(0)=1,
又f(1)=2=f(1)f(0),故f(0)=1.
(2)由于f(x)=f2(
x
2
)≥0
,假設(shè)存在t,使f(t)=0,則f(x)=f(x-t+t)=f(x-t)f(t)=0,與題設(shè)矛盾,所以f(x)>0.
設(shè)x1<x2,
f(x2)-f(x1
=f(x2-x1+x1)-f(x1
=f(x1)(f(x2-x1)-1)>0,
∴f(x2)-f(x1)>0,
∴f(x)為單調(diào)遞增函數(shù).
點(diǎn)評(píng):本題考查函數(shù)單調(diào)性的判斷與證明,考查賦值法的運(yùn)用,考查反證法及函數(shù)單調(diào)性的定義的應(yīng)用,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)=
1
x-2
(x>2)
1
2-x
(x<2)
1(x=2)
,若關(guān)于x的方程f2(x)+af(x)+b=3有且只有3個(gè)不同實(shí)數(shù)解x1、x2、x3,且x1<x2<x3,則x12+x22+x32=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)滿足f(x)•f(x+2)=3,若f(1)=2,則f(5)=
2
2
;f(2011)=
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•順義區(qū)二模)設(shè)定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),f′(x)是f(x)的導(dǎo)函數(shù).當(dāng)x∈[0,π]時(shí),0<f(x)<1;當(dāng)x∈(0,π)且x≠
π
2
時(shí),(x-
π
2
)f′(x)<0
.則函數(shù)y=f(x)-cosx在[-3π,3π]上的零點(diǎn)個(gè)數(shù)為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)滿足f(x+π)=f(x-π),f(
π
2
-x
)=f(
π
2
+x
),當(dāng)x∈[-
π
2
,
π
2
]
時(shí),0<f(x)<1;當(dāng)x∈(-
π
2
,
π
2
)
且x≠0時(shí),x•f′(x)<0,則y=f(x)與y=cosx的圖象在[-2π,2π]上的交點(diǎn)個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)同時(shí)滿足以下條件:①f(x+1)=-f(x)對(duì)任意的x都成立;②當(dāng)x∈[0,1]時(shí),f(x)=ex-e•cos
πx
2
+m(其中e=2.71828…是自然對(duì)數(shù)的底數(shù),m是常數(shù)).記f(x)在區(qū)間[2013,2016]上的零點(diǎn)個(gè)數(shù)為n,則( 。
A、m=-
1
2
,n=6
B、m=1-e,n=5
C、m=-
1
2
,n=3
D、m=e-1,n=4

查看答案和解析>>

同步練習(xí)冊(cè)答案