在平面直角坐標(biāo)系中,已知點(diǎn),動(dòng)點(diǎn)軸上的正射影為點(diǎn),且滿足直線.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡C的方程;
(Ⅱ)當(dāng)時(shí),求直線的方程.

(Ⅰ));(Ⅱ)

解析試題分析:(Ⅰ)屬直接法求軌跡問題,再根據(jù)列式子時(shí),可根據(jù)直線垂直斜率相乘等于列出方程,但需注意斜率存在與否的問題,還可轉(zhuǎn)化為向量垂直問題,用數(shù)量積為0列出方程(因此法不用討論故常選此法解決直線垂直問題)。因點(diǎn)不能與原點(diǎn)重合故。(Ⅱ)即直線的傾斜角為。故可求出直線的斜率,由點(diǎn)斜式可求直線的方程。
試題解析:解:(Ⅰ)設(shè),則,,.        2分
因?yàn)?直線
所以 ,即.                       4分
所以 動(dòng)點(diǎn)的軌跡C的方程為).                5分
(Ⅱ)當(dāng)時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c1/5/1ggbt4.png" style="vertical-align:middle;" />,所以.
所以 直線的傾斜角為.
當(dāng)直線的傾斜角為時(shí),直線的方程為;      8分
當(dāng)直線的傾斜角為時(shí),直線的方程為.     10分
考點(diǎn):1、求軌跡方程;2、直線方程的點(diǎn)斜式。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)、為雙曲線的左、右焦點(diǎn),過作垂直于軸的直線,在軸上方交雙曲線于點(diǎn),且.圓的方程是
(1)求雙曲線的方程;
(2)過雙曲線上任意一點(diǎn)作該雙曲線兩條漸近線的垂線,垂足分別為,求的值;
(3)過圓上任意一點(diǎn)作圓的切線交雙曲線、兩點(diǎn),中點(diǎn)為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知點(diǎn),是動(dòng)點(diǎn),且的三邊所在直線的斜率滿足
(1)求點(diǎn)的軌跡的方程;
(2)若是軌跡上異于點(diǎn)的一個(gè)點(diǎn),且,直線交于點(diǎn),問:是否存在點(diǎn),使得的面積滿足?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是橢圓的左、右頂點(diǎn),橢圓的離心率為,右準(zhǔn)線的方程為.

(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點(diǎn),直線于點(diǎn),以為直徑的圓記為. ①若恰好是橢圓的上頂點(diǎn),求截直線所得的弦長;
②設(shè)與直線交于點(diǎn),試證明:直線軸的交點(diǎn)為定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓 的離心率為 ,點(diǎn) 為其下焦點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn),過 的直線 (其中)與橢圓 相交于兩點(diǎn),且滿足:.

(1)試用  表示
(2)求  的最大值;
(3)若 ,求  的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂在坐標(biāo)原點(diǎn),焦點(diǎn)到直線的距離是
(1)求拋物線的方程;
(2)若直線與拋物線交于兩點(diǎn),設(shè)線段的中垂線與軸交于點(diǎn) ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知點(diǎn),圓是以為圓心,半徑為的圓,點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線和半徑所在的直線交于點(diǎn).
(Ⅰ)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;
(Ⅱ)已知是曲線上的兩點(diǎn),若曲線上存在點(diǎn),滿足為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:的一個(gè)焦點(diǎn)是(1,0),兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形.
(1)求橢圓C的方程;
(2)過點(diǎn)Q(4,0)且不與坐標(biāo)軸垂直的直線l交橢圓C于A、B兩點(diǎn),設(shè)點(diǎn)A關(guān)于x軸的
對稱點(diǎn)為A1.求證:直線A1B過x軸上一定點(diǎn),并求出此定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長為,且點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)是橢圓長軸上的一個(gè)動(dòng)點(diǎn),過作方向向量的直線交橢圓兩點(diǎn),求證:為定值.

查看答案和解析>>

同步練習(xí)冊答案