【題目】現(xiàn)有10支隊伍參加籃球比賽,規(guī)定:比賽采取單循環(huán)比賽制,即每支隊伍與其他9支隊伍各比賽一場;每場比賽中,勝方得2分,負方得0分,平局雙方各得1分.下面關于這10支隊伍得分的敘述正確的是(
A.可能有兩支隊伍得分都是18分
B.各支隊伍得分總和為180分
C.各支隊伍中最高得分不少于10分
D.得偶數(shù)分的隊伍必有偶數(shù)個

【答案】D
【解析】解:設每支隊伍勝x場,負y場,平z場(x,y,z都是不大于9的自然數(shù)),則x+y+z=9,且最終得分為n=2x+z;

對于A,某支隊伍得分18分為滿分,也就是勝了9場,那么其他9隊至少有一次負,就不可能再得18分,故錯誤;

對于B,總共要進行 =45場比賽,每場比賽的得分和都是2分,最后總得分=45×2=90分,故錯誤;

對于C,最高得分可能超過10分,比如A中可能為18分,故錯誤;

對于D,由B可知,各個隊伍得分總和m1+m2+…+m10=90,這10個數(shù)中,若有(2k+1)個偶數(shù),則有10﹣(2k+1)=(9﹣2k)個奇數(shù),其和必為奇數(shù),不可能等于90,∴這10個數(shù)中,有偶數(shù)個偶數(shù),正確.

故選D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex+x2﹣x,g(x)=x2+ax+b,a,b∈R. (Ⅰ)當a=1時,求函數(shù)F(x)=f(x)﹣g(x)的單調區(qū)間;
(Ⅱ)若曲線y=f(x)在點(0,1)處的切線l與曲線y=g(x)切于點(1,c),求a,b,c的值;
(Ⅲ)若f(x)≥g(x)恒成立,求a+b的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,Q為BB1的中點,過A1 , Q,D三點的平面記為α.
(1)證明:平面α與平面A1B1C1D1的交線平行于直線CD;
(2)若AA1=3,BC=CD= ,∠BCD=120°,求平面α與底面ABCD所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 , 滿足| |=2,| |=1,則下列關系可以成立的而是(
A.( )⊥
B.( )⊥( +
C.( + )⊥
D.( + )⊥

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(ax﹣1)e2x+x+1(其中e為自然對數(shù)的e底數(shù)).
(1)若a=0,求函數(shù)f(x)的單調區(qū)間;
(2)對x∈(0,+∞),f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四面體ABCD中,已知平面BCD⊥平面ABC,BD⊥DC,BC=6,AB=4 ,∠ABC=30°.
(1)求證:AC⊥BD;
(2)若二面角B﹣AC﹣D為45°,求直線AB與平面ACD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 拋物線 焦點均在 軸上, 的中心和 頂點均為原點 ,從每條曲線上各取兩個點,將其坐標記錄于表中,則 的左焦點到 的準線之間的距離為( )

A.
B.
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校在“普及環(huán)保知識節(jié)”后,為了進一步增強環(huán)保意識,從本校學生中隨機抽取了一批學生參加環(huán);A知識測試.經(jīng)統(tǒng)計,這批學生測試的分數(shù)全部介于75至100之間.將數(shù)據(jù)分成以下5組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100],得到如圖所示的頻率分布直方圖.
(Ⅰ)求a的值;
(Ⅱ)現(xiàn)采用分層抽樣的方法,從第3,4,5組中隨機抽取6名學生座談,求每組抽取的學生人數(shù);
(Ⅲ)假設同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,試估計隨機抽取學生所得測試分數(shù)的平均值在第幾組(只需寫出結論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax+b.
(1)若f(x)在x=2有極小值1﹣e2 , 求實數(shù)a,b的值.
(2)若f(x)在定義域R內單調遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案