精英家教網 > 高中數學 > 題目詳情

已知圓的方程為,直線的方程為,點在直線上,過點作圓的切線,切點為.
(1)若,試求點的坐標;
(2)若點的坐標為,過作直線與圓交于兩點,當時,求直線的方程;

(1) (2)

解析試題分析:(1)根據題意可知,因為,因為,則可得,設出點的坐標根據點在直線上且,可求得點的坐標。(2)當直線直線的斜率不存在時,直線與圓無交點,舍。設出直線的點斜式方程,畫圖分析可知,可求得圓心到直線的距離,即可求得直線的斜率。
試題解析:解: (1)設,由題可知,所以,
解之得:,
故所求點的坐標為.        6分
(2)設直線的方程為:,易知存在,
由題知圓心到直線的距離為,所以,  
解得,,
故所求直線的方程為:.    13分
考點:1直線和圓相交的弦長;2點到線的距離公式。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知點在圓上運動,,點為線段MN的中點.
(1)求點的軌跡方程;
(2)求點到直線的距離的最大值和最小值..

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,

在平面直角坐標系中,方程為x2+y2+Dx+Ey+F=0的圓M的內接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0.
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且·=0,求D2+E2-4F的值.
(3)設四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判斷點O,G,H是否共線,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知點A(-3,0),B(3,0),動點P滿足|PA|=2|PB|.
(1)若點P的軌跡為曲線C,求此曲線的方程;
(2)若點Q在直線l1xy+3=0上,直線l2經過點Q且與曲線C只有一個公共點M,求|QM|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓的方程為,點是坐標原點.直線與圓交于兩點.
(1)求的取值范圍;
(2)過作圓的弦,求最小弦長?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系xOy中,曲線yx2-6x+1與坐標軸的交點都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線xya=0交于A,B兩點,且OAOB,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓經過坐標原點和點,且圓心在軸上.
(1)求圓的方程;
(2)設直線經過點,且與圓相交所得弦長為,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知是橢圓的右焦點;圓軸交于兩點,其中是橢圓的左焦點.

(1)求橢圓的離心率;
(2)設圓軸的正半軸的交點為,點是點關于軸的對稱點,試判斷直線與圓的位置關系;
(3)設直線與圓交于另一點,若的面積為,求橢圓的標準方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

求與圓外切于點,且半徑為的圓的方程.

查看答案和解析>>

同步練習冊答案