【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在點處的切線方程;
(2)對于任意的,的圖象恒在圖象的上方,求實數(shù)a的取值菹圍.
【答案】(1);(2)
【解析】
(1)求出的值可得切點坐標(biāo),求出的值,可得切線斜率,利用點斜式可得曲線在點處的切線方程;(2)由題意得在恒成立,令,則需求出函數(shù)的最小值即可,但由于的零點不易求出,故通過再次求導(dǎo)的方法逐步求解,進(jìn)而求得的最小值.
(1)當(dāng)時,,
∴,
∴,
又,
∴函數(shù)在點處的切線方程為,
即.
(2)由題知當(dāng)時,恒成立,
即當(dāng)時,恒成立,
等價于在恒成立.
令,
則,
令,則,
∴在上單調(diào)遞增,且,
存在唯一零點,
使得,
且當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增.
∴.
由,得,
∴,
即.
設(shè),則,
∴在單調(diào)遞增.
∴,
∴,
∴ ,
∴.
∴.
故實數(shù)的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD和矩形ABEF中,,,矩形ABEF可沿AB任意翻折.
(1)求證:當(dāng)點F,A,D不共線時,線段MN總平行于平面ADF.
(2)“不管怎樣翻折矩形ABEF,線段MN總與線段FD平行”這個結(jié)論正確嗎?如果正確,請證明;如果不正確,請說明能否改變個別已知條件使上述結(jié)論成立,并給出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四面體的各棱長均為2,、、分別為棱、、的中點,以為圓心、1為半徑,分別在面、面內(nèi)作弧,并將兩弧各分成五等份,分點順次為、、、、、以及、、、、、.一只甲蟲欲從點出發(fā),沿四面體表面爬行至點,則其爬行的最短距離為___________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公園內(nèi)有一塊以為圓心半徑為米的圓形區(qū)域.為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設(shè)計方案:如圖,在圓形區(qū)域內(nèi)搭建露天舞臺,舞臺為扇形區(qū)域,其中兩個端點,分別在圓周上;觀眾席為梯形內(nèi)切在圓外的區(qū)域,其中,,且,在點的同側(cè).為保證視聽效果,要求觀眾席內(nèi)每一個觀眾到舞臺處的距離都不超過米.設(shè),.問:對于任意,上述設(shè)計方案是否均能符合要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個極值點,,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給圖中A,B,C,D,E,F六個區(qū)域進(jìn)行染色,每個區(qū)域只染一種顏色,且相鄰的區(qū)域不同色.若有4種顏色可供選擇,則共有___種不同的染色方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,圓.
(1)若直線過點且到圓心的距離為,求直線的方程;
(2)設(shè)過點的直線與圓交于、兩點(的斜率為負(fù)),當(dāng)時,求以線段為直徑的圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com