【題目】已知x,y滿足約束條件 ,若z=ax+y的最大值為4,則a=( )
A.3
B.2
C.﹣2
D.﹣3
【答案】B
【解析】解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
則A(2,0),B(1,1),
若z=ax+y過A時取得最大值為4,則2a=4,解得a=2,
此時,目標(biāo)函數(shù)為z=2x+y,
即y=﹣2x+z,
平移直線y=﹣2x+z,當(dāng)直線經(jīng)過A(2,0)時,截距最大,此時z最大為4,滿足條件,
若z=ax+y過B時取得最大值為4,則a+1=4,解得a=3,
此時,目標(biāo)函數(shù)為z=3x+y,
即y=﹣3x+z,
平移直線y=﹣3x+z,當(dāng)直線經(jīng)過A(2,0)時,截距最大,此時z最大為6,不滿足條件,
故a=2,
故選:B
作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合確定z的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心在x軸上,點 在圓C上,圓心到直線2x﹣y=0的距離為 ,則圓C的方程為( )
A.(x﹣2)2+y2=3
B.(x+2)2+y2=9
C.(x±2)2+y2=3
D.(x±2)2+y2=9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:對于任意n∈N*且n≥2時,an+λan﹣1=2n+1,a1=4.
(1)若 ,求證:{an﹣3n}為等比數(shù)列;
(2)若λ=﹣1.①求數(shù)列{an}的通項公式; ②是否存在k∈N*,使得 +25為數(shù)列{an}中的項?若存在,求出所有滿足條件的k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù):10.1,9.8,10,x,10.2的平均數(shù)為10,則該組數(shù)據(jù)的方差為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+8x+b(a,b為互不相等的正整數(shù)),方程f(x)=0的兩個實根為x1 , x2(x1≠x2),且|x1|<1,|x2|<1,若f(1)+f(﹣1)的最大值與最小值分別為M,m,則M+m的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 且an=2﹣2Sn , 數(shù)列{bn}為等差數(shù)列,且b5=14,b7=20.
(1)求數(shù)列{an}的通項公式;
(2)若cn=anbn , n∈N* , 求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 已知2Sn=3n+3.
(1)求{an}的通項公式;
(2)若數(shù)列{bn},滿足anbn=log3an , 求{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,且an+1﹣an=2n , n∈N* , 若 +19≤3n對任意n∈N*都成立,則實數(shù)λ的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一條曲線C在y軸右邊,C上每一點到點F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.
(1)求曲線C的方程;
(2)是否存在正數(shù)m,對于過點M(m,0)且與曲線C有兩個交點A,B的任一直線,都有 <0?若存在,求出m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com